
A Prediction Approach to Structural Identification

Jason Weitze

Department of Economics

Stanford University

Metrics Workshop

March 10th, 2025



Motivation

Setting: A researcher has a model & wants to answer an economic or policy question
E.g., In a life-cycle savings model, how much are consumers saving as informal insurance?

Typical First Q: Do my chosen moments identify the model?
E.g., Do consumption moments identify the life-cycle savings model?

Problem: Identification analysis is Hard ⇒ Status quo relies on heuristic arguments

Eckstein, Keane & Lifshitz (2019 ECMA)

This Paper: Propose a flexible, computational alternative to traditional identification analysis



Outlining Our Approach

1. Model broader decision problem motivating identification analyses

i. Researchers choose data to estimate quantity of interest

ii. Characterizes a researcher’s value for different types of data

→ Value of population data gives measure of identification

2. Translate decision problem into an algorithmic prediction exercise

◦ Researcher’s value for a given type of data = how well it predicts their quantities of interest

◦ By combining simulations with machine learning we can measure the value of data

What we get:

◦ Algorithmic framework for directly choosing data to estimate quantity of interest

◦ For other use cases, we can still answer identification questions



Researcher’s Decision Problem: Gourinchas and Parker (2002)

Setting:

Model: Life-cycle savings model

Objective (Loosely): What motivates savings behavior across life-cycle?

The Researcher’s Decision Problem

0. Choose what data to observe e.g., consumption moments vs. savings moments?

1. Observe chosen moments (consumption moments)

2. Provide estimates on relative importance of savings mechanisms across life-cycle

3. Receive utility based on quality of estimates

“But, I already have data”

→ Identification questions conceptually precede the data

→ Later, we extend framework to incorporate existing data (closer to local identification)



Researcher’s Decision Problem

Setting:

◦ Model: θ ∈ Θ0 specifies a (parametric) distribution Pθ(X )

Xk ∼ N(fk (θ), 1) for known fk e.g., f1(θ) = θ3 − 5
3
θ2 + θ

◦ Objective: Learn about an economic or policy-relevant quantity, C(θ)

C(θ) = 1{θ > c}

The Researcher’s Decision Problem

0. Choose which moments, Mn(θ) ∈ M(θ), to observe

Mn,k (θ) = En[Xk (θ)] for k = 1, 2

1. Observe chosen moments, Mn(θ) = mn

2. Provide estimates δ(mn) of C(θ)

3. Receive utility, U (C(θ), δ(mn)) = − (C(θ)− δ(mn))
2



Researcher’s Decision Problem & Identification

Setting:

◦ Model: θ ∈ Θ0 specifies a (parametric) distribution Pθ(X )

Xk ∼ N(fk (θ), 1) for known fk e.g., f1(θ) = θ3 − 5
3
θ2 + θ

◦ Objective: Identify θ, C(θ) =θ

C(θ) = 1{θ > c}

The Researcher’s Decision Problem

0. Choose which population moments, M(θ) ∈ M(θ), to observe

Mk (θ) = E[Xk (θ)] for k = 1, 2

1. Observe chosen population moments, M(θ) = m

2. Provide estimates δ(m) of θ

3. Receive utility, U (θ, δ(m)) e.g., = − (θ − δ(mn))
2



Researcher’s Decision Problem & Identification: An Illustration

Point identification ⇐⇒ Perfect answers given population data .



Why is Identification Hard to Study?

Model gives us moment functions, M(θ) (or at least we can approximate with simulations)

→ But identification concerns it’s inverse, which we often don’t know

Model
Parameters

Population
Moments

Model

Identification ?

This asymmetry may motivate minimum distance estimation

θ̂(mn) = min
θ

d(M(θ), mn)



Why is Identification Hard to Study?

Model gives us moment functions, M(θ) (or at least we can approximate with simulations)

→ But identification concerns it’s inverse, which we often don’t know

Model
Parameters

Population
Moments
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This Paper: Use knowledge of M(θ) to learn δ̂(m)

θ̂(mn) = min
θ

d(M(θ), mn)



Our Approach

Leverage knowledge of M(θ) (Or approx. it with sims)

i. Pick θs ∈ Θ0, and compute its population moments, M(θs) for s ∈ {1, . . . ,S}
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Our Approach

Leverage knowledge of M(θ) (Or approx. it with sims)

i. Pick θs ∈ Θ0, and compute its population moments, M(θs) for s ∈ {1, . . . ,S}

ii. Use prediction tools to learn to predict θ given M(θ)

iii. Assess out of sample utility to approximate the value of the data



Model Identification is not Necessarily the Researcher’s Goal

a. Identification concerns population, but typically observe samples, e.g., Mn(θ)

b. Researchers often interested in C(θ), not θ

E.g., C(θ) = 1{θ > c}
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Characterizing The Value of Data

Working Backwards:

→ Assume researchers chose Mn(θ) ∈ M(θ) and have prior π(θ)

→ Then they pick δ to maximize expected utility

δ∗ = argmax
δ∈∆

Eθ∼π U
(
C(θ) , δ(Mn(θ))

)



Characterizing The Value of Data

Working Backwards:

→ Assume researchers chose Mn(θ) ∈ M(θ) and have prior π(θ)

→ Then they pick δ to maximize expected utility

δ∗ = argmax
δ∈∆

Average Utility
(
δ ;Mn

)

How do researchers’ value data?

→ Based on quality of subsequent decisions

V (Mn) = Average Utility
(
δ∗ ;Mn

)

The Researcher’s Decision Problem:

M∗
n = arg max

Mn∈Mn

V (Mn)



Interpreting The Researcher’s Value of Data

If V (Mn) doesn’t have interpretable units, we suggest a simple transformation

→ How much does Mn improve upon trivial moments relative to oracle moments?

Mtrivial(θ) = 1 Moracle(θ) = θ

General Case:

Ṽ (Mn) =
V (Mn)− V (M trivial)

V (Moracle)− V (M trivial)



Interpreting The Researcher’s Value of Data

If V (Mn) doesn’t have interpretable units, we suggest a simple transformation

→ How much does Mn improve upon trivial moments relative to oracle moments?

Mtrivial(θ) = 1 Moracle(θ) = θ

Special Case, RMSE:

I (Mn) =
StDπ(C(θ) ) − RMSEπ (C(θ) |Mn(θ) )

StDπ(C(θ) )

Interpretations:

◦ Observing Mn is expected to explain I (Mn)% of the prior StD

◦ I (M) = 1 ⇐⇒ Point Identification (w.p. 1)
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Measuring the Value of Data: V (Mn)

Problem: we don’t know δ, or Eθ

V (Mn) = Eθ∼π

[
U
(
C(θ) , δ(Mn)

)]



Measuring the Value of Data: V (Mn)

Second Best: Use estimated counterpart,

V̂S0,S1(Mn) = ÊS1

[
U
(
C(θ) , δ̂S0(Mn)

)]
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Measuring the Value of Data: V (Mn)

Second Best: Use estimated counterpart,

V̂S0,S1(Mn) = ÊS1

[
U
(
C(θ) , δ̂S0(Mn)

)]

Algorithm:

1. For i = 1, . . . ,S = S0 + S1:

a. Draw θi ∼ π

b. Compute moments Mn(θi ) = mn,i and quantity of interest C(θi ) = ci

2. Estimate δ̂S0 using first S0 obs:

e.g., δ̂S0 = arg min
δ∈∆S

S−1
0

∑
i

(
ci − δ(mn,i )

)2
.

3. Compute out-of-sample utility using the other S1 obs



Formal Properties of Algorithm

Properties of Algorithm

If δ̂S0 is a consistent estimate for δ∗ (as S0,S1 → ∞), then:

i. V̂S0,S1(Mn) is consistent for V (Mn)

ii. V̂S0,S1(Mn) is an unbiased lower bound for V (Mn)

Implications of lower bound for identification analyses:

◦ For fixed S , can prove point-identification, but not partial-identification

◦ Fortunately, researchers rarely want to prove partial identification

◦ Researchers arguing point-identification are incentivized to ↑ S until they persuade critics



Roadmap

The Decision Problem

Measurement

Empirical Application

Additional Algorithmic Exercises

Conclusion



An Empirical Application: Gourinchas and Parker (2002)

◦ Objective: Why do consumers save across the life-cycle?

◦ Model: Agents trade-off consumption today (Ct) and in the future

Vt(Wt ,Pt) = max
Ct

C 1−ρ
t

1− ρ
+ β E [Vt+1(Wt+1,Pt+1)]

◦ Where:
→ Wt is cash on hand (i.e., liquid assets)

→ Pt is the permanent component of income

◦ Income grows randomly, but savings grow deterministically

◦ Boundary Condition: Agents consume CT+1 in retirement,

CT+1 = γ0PT+1 + γ1WT+1



Identify & Estimate Model with Avg. Consumption Profile

Q: How well does the consumption profile predict the parameters?



Can we Predict the Parameters?

Simulate moments from S = 120, 000 different parameter values, θi

◦ For each θi = (βi , ρi , γ0,i , γ1,i ), simulate n = 100, 000 agents

◦ Original Moments = avg. cons. profile, Mn(θi ) =
{
En,θi

[Ct ] : t = 26, . . . , 65
}



Next Steps in Gourinchas and Parker

#0. Have we run enough simulations?

#1. Accept possibility of partial identification

a. E.g., Estimate identified set

#2. Choose additional moments to make γ0, γ1 more predictable

#3. Are the retirement motives easier to predict?
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2. Can Additional Moments Improve Predictability?

Retirement consumption function: Ct = γ0Pt + γ1Wt

→ If we observed Pt , estimate regression coefs

Idea: Use Yt as a proxy for Pt and use estimated coefs as ‘moments’

Ct = β0Yt + β1Wt + εt
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3. Is the Retirement Motive Predictable?

Authors Q: When are Retirement Savings > Precautionary Savings?

Predicting the Retirement Motive

Take-Away #1: Relationship between savings motives is identified by both sets of moments



3. Is the Retirement Motive Predictable?

Authors Q: When are Retirement Savings > Precautionary Savings?

Predicting the Retirement Motive

Take-Away #2: Relationship between savings motives is predictable without data (i.e., it’s mechanical)
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Taking Stock

Recap

1. We consider researchers choosing moments to maximize V (Mn)

2. We can measure V (Mn) for a given choice of Mn: V̂S0,S1(Mn)

3. Choose moments with largest V̂S0,S1(Mn)

Follow-Up Exercises

a. If we already have data, we can incorporate it

→ Can compute local value of data (analagous to local identification)

b. If M(θ) is large, we can maximize V (Mn) more computationally efficiently

→ Separately evaluating V (Mn) for each Mn ∈ M(θ) can be prohibitively expensive



Incorporating Existing Data

Researcher has observed M̃n(θ0) = m̃n

◦ New Decision Problem: Choose which moments to observe next

◦ Characterizes local value of data: V (Mn|m̃n) = “Incremental value of Mn(θ) given m̃n”



Local Value of Data and Local Identification

Local value of uninformative/constant moments, reflects size of identified set given m̃n
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Incorporating Existing Data

Researcher has observed M̃n(θ0) = m̃n

◦ New Decision Problem: Choose which moments to observe next

◦ Characterizes local value of data: V (Mn|m̃n) = “Incremental value of Mn(θ) given m̃n”

How? Replace prior with posterior: π(θ|m̃n)

→ We provide algorithm that efficiently leverages simulated data to estimate posterior

Typical Q: Which moments of my dataset, D, should I use?

◦ Requires estimating π(θ|D), which is preferred to one based on moments

→ But often difficult to estimate

◦ Alt: Iteratively condition on moments, and ask, ‘which additional moments?’

→ Can select moments s.t. sequence of posteriors converge to π(θ|D)



Dealing with a Large Choice Space, M(θ)

1. Parameterize moment space by growing class of prediction functions

◦ Consider M(θ) = {En[ϕ(X (θ))] : ϕ ∈ Φ}

◦ Let ΦS be a class of prediction functions that approximates Φ as S → ∞

◦ Operationally, we learn ϕ : X (θ) 7→ C(θ)

⇒ Choose moments, Mn(θ) = En

[
ϕ̂S0 (X (θ))

]

2. If choice space is large, but discrete, select moments using nonlinear lasso

δ, β = max
δ,β

Average Utility
(
δ ;Mn diag(β)

)
− λcv ||β||1

→ Implicitly selects moments with βk ̸= 0, i.e., Mn = {Mn,k : βk ̸= 0}
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Conclusion (Feedback? Email: jweitze@stanford.edu, Thanks!)

Conceptual Framework:

1. Embed identification in a broader decision problem:

“What data should we collect to inform our policy question?”

2. Translate this decision problem into an algorithmic prediction exercise

Intuition: Value of data ≈ how well it predicts C(θ)

Algorithmic Framework:

3. Combine simulations & machine learning to measure predictive ability of data, and thus, its value

4. Generalize core algorithm to:

a. Incorporate existing data

b. Choose what data to collect more efficiently

Empirical Application:

5. Life-cycle savings model in Gourinchas and Parker (2002)



Relation to AGS (Andrews, Gentzkow & Shapiro, 2017) Intro Method

Key Differences:

◦ AGS provide local sensitivity measure
→ AGS: How do (small) changes in M map into θ̂?

→ This Paper: How does M map into θ?

◦ AGS assume point identification
→ This paper does not assume point identification
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