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Abstract

When faced withmultiple causes, researchers often ask, “Howmuch did each cause
contribute to their combined effect?” For instance, advertisers want to attribute the
effect of an ad campaign to each ad, while economists want to decompose the effect
of a policy bundle. This seemingly simple question hides a fundamental problem:
there is no single, agreed-upon estimand, so competing methods naturally yield
contradictory results. This paper confronts this challenge by developing a novel
framework for causal attribution. I characterize a causal decomposition, establish-
ing that it attributes to each cause its individual effect plus some convex share of
its jointly-produced effects (e.g., interaction or indirect effects). The result is not a
single causal decomposition, but rather a set, formally capturing the fundamental
ambiguity of attribution. While standard practice masks this ambiguity by report-
ing a single point estimate, I propose embracing it by reporting a new estimand:
attribution bounds. These bounds transparently communicate the minimum and
maximum attributable to a cause across all causal decompositions, collapsing to a
single point when there are no joint effects. To make the bounds practical, I provide
design-based and observational methods for identification and estimation. Finally,
I demonstrate the bounds utility in two applications: one where wide bounds un-
derscore the limitations of reporting a single point estimate, and another where
tight bounds indicate minimal ambiguity.
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1. Introduction

From public policy to marketing, researchers often ask not just if a set of causes has an
effect, but “Howmuch does each cause contribute to their combined effect?” The allure
of this question lies in its promise to distill a complex causal system into a single number
per cause, whether attributing the effect of an ad campaign to each ad or decomposing a
policy bundle’s effect to isolate the impact of its components (e.g., Econsultancy and
Google Analytics 2012).

However, the attractive simplicity of this question hides a fundamental problem: a
wide range of competingmethods, from sequential decompositions to the Shapley value,
naturally lead to contradictory answers (Shapley 1952). The conflict arises not from
statistical uncertainty, but from conceptual ambiguity: there is no single, agreed-upon
estimand, leaving researchers to make an ad-hoc choice. The prevailing practice is to
select one method and report its point estimate as the definitive answer. This, however,
masks the underlying problem, presenting one possible answer as if it were the only
one.

This paper confronts this challenge by proposing a novel framework for causal
attribution. I begin by characterizing a causal decomposition, establishing that it must
attribute to each cause its individual effect, while allowing for any split of its jointly-
produced effects (e.g., an interaction or indirect effect). This characterization reveals
that the ambiguity in attribution is fundamental, stemming from the different ways one
could attribute the joint effects. Instead of masking this ambiguity, I propose embracing
it. To do so, I introduce a new estimand, attribution bounds, corresponding to the
minimumandmaximumattributable to a cause across all causal decompositions. These
bounds transparently communicate the degree of ambiguity, collapsing to a single point
only when there is none (i.e., when there are no joint effects). To make this framework
practical, I develop identification and estimation strategies for the attribution bounds
and demonstrate their value in two empirical applications.

To ground the analysis, I consider a simple yet general setting: decomposing the
combined effect of two sequential, binary causes. The sequential nature of the causes
clarifies the causal structure by defining a clear direction of influence, avoiding any
confusion that may arise when causes occur simultaneously. This paper focuses on
decomposing the causes’ combined effect: the difference between the realized outcome
and the counterfactual had neither cause occurred. The challenge is that not all de-
compositions of the causes’ combined effect are equally principled: a naive method

1



can assign full credit to a cause that had no effect. The goal, therefore, is to distin-
guish such methods from principled ones by formally characterizing the set of causal
decompositions.

The characterization of causal decompositions proceeds in two complementary
parts. First, I take a constructive approach, building from a simple algebraic identity
that partitions the combined effect into its constituent components. This partition
reveals a crucial distinction between effects that are individually produced by a single
cause (direct effects) and those that are jointly produced bymultiple causes (e.g., indirect
and interaction effects). While individual effects are straightforward to attribute to a
single cause, jointly produced effects create a fundamental ambiguity. For instance, in
an indirect effect, does the first cause deserve credit for initiating the chain of events or
the second cause for its ultimate impact? I argue that both causes have a reasonable
claim to the joint effects, leading to the following definition: a causal decomposition
attributes to each cause its individual effect, while allowing any split of the joint effects.

Second, I provide a formal argument that independently leads to the same character-
ization. I propose four properties that a decomposition should satisfy to be considered
causal. These properties are designed to be intuitive; for example, a “No Credit for No
Effect” property ensures that a cause with no possible effect on the outcome receives
no credit. The main theoretical result shows the equivalence of these two approaches:
a decomposition is causal if and only if it satisfies the four proposed properties.

This characterization of a causal decomposition provides a common language for
classifying and comparing existing methods. First, it establishes a clear boundary be-
tween principled and unprincipled approaches, thereby ruling out common heuristics
like “last-touch” attribution used in marketing (e.g., Econsultancy and Google Analytics
2012; Quantcast 2012). Second, it reveals that principled methods, including various
sequential decompositions, are simply different ways of attributing jointly produced
effects. Even the Shapley value, often celebrated for its axiomatic uniqueness, does not
uniquely dictate how to allocate credit for the joint effects. Indeed, a recent proliferation
of Shapley variants has emerged by adapting game-theoretic ideas to address causality
in distinct ways (e.g., Dalessandro, Perlich, Stitelman and Provost 2012; Frye, Rowat
and Feige 2020; Heskes, Sijben, Bucur and Claassen 2020; Singal, Michailidis and Ng
2021; Budhathoki, Minorics, Blöbaum and Janzing 2022; Singal, Besbes, Desir, Goyal and
Iyengar 2022; Jung, Kasiviswanathan, Tian, Janzing, Blöbaum and Bareinboim 2022).
This divergence underscores the fundamental ambiguity in attribution that this paper
makes explicit.
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The existence of a set of causal decompositionsmotivatesmymain proposal: instead
of reporting a single number, I advocate for reporting attribution bounds. These bounds
indicate the full range of values a cause can be assigned under any causal decomposi-
tion, thereby making the degree of ambiguity explicit. To be clear, attribution bounds
differ from traditional identification bounds. While identification bounds communi-
cate the limitations of data for pinning down a given estimand, attribution bounds
capture ambiguity in the choice of estimand. The width of the bounds thus serves as a
direct measure of this conceptual ambiguity, widening with the magnitude of jointly-
produced effects and collapsing to a single point in their absence. Reporting attribution
bounds replaces a single, potentially misleading estimate with a more transparent and
informative summary of a cause’s contribution.

I then develop strategies for identifying and estimating attribution bounds in both ex-
perimental and observational settings. In an experimental context, the analysis reveals
a surprising challenge: no standard experiment can, by itself, identify the attribution
bounds. I show that identification is possible, however, with a mild assumption on the
sign of the average joint effects and an eligibility experiment that randomizes eligibility
to receive treatment rather than randomizing treatment assignment. This design is
essential, as directly randomizing treatment assignments overrides individuals’ endoge-
nous choices that generate the indirect effects one aims to attribute. In observational
settings where experiments are infeasible, I rely on a sequential unconfoundedness
assumption (Robins and Greenland 1992; Imai, Keele and Yamamoto 2010b), which
generalizes the familiar selection-on-observables condition to the case of multiple,
sequential causes.

To demonstrate the practical utility of attribution bounds, I estimate them in two
contrasting applications. First, I examine a well-known framing experiment where
the jointly produced effects turn out to be substantial (Brader, Valentino and Suhay
2008). Here, the estimated bounds are wide, revealing a high degree of ambiguity that
a single point-estimate would obscure. This result highlights the danger of relying on
a single method, which could lead to misleading conclusions or allow for strategic
reporting. Second, I re-analyze a factorial experiment on early-childhood interventions
where the design mechanically eliminates most joint effects (Gertler, Heckman, Pinto,
Zanolini, Vermeersch, Walker, Chang and Grantham-McGregor 2014). In this setting,
the estimated attribution bounds are tight, revealing that the ambiguity in attribution
is empirically negligible. Together, these results, illustrate how attribution bounds
function in practice: they transparently quantify the ambiguity inherent in a problem,
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providing a more honest summary of a cause’s contribution than any single number.
Finally, I distinguish between two distinct applications of attribution: decision-

making and communication. While decision-makers often use attribution to guide
choices, like allocating an ad budget, this is often misguided. If a decision problem can
be fully specified and its solution implemented, doing sowill yield a better outcome than
relying only on attribution. Furthermore, ambiguity over attribution does not imply
ambiguity in decision-making; a single optimal decision can exist evenwhen attribution
bounds are wide. The primary role of attribution, therefore, is not direct decision-
making. Instead, I argue attribution bounds are ideal for conveying the causal structure
of a system in a simple, transparent way; for example, when the ultimate decision
problem is not yet known, when there are frictions preventing the implementation of a
complex optimal policy, or when presenting results to diverse audiences (Andrews and
Shapiro 2021). This leads to a concrete recommendation: optimize decisions directly
when you can, and use attribution bounds for clear communication when you cannot.

This paper contributes to the extensive literature on multiple causes, building on
foundational work in mediation analysis and sequential treatments (e.g., Robins and
Greenland 1992; Pearl 2009; Imai, Keele and Tingley 2010a; Hernán and Robins 2020).
Unlike prior work that decomposes the effect of a single cause in the presence of
potential mediators (e.g., VanderWeele 2014; VanderWeele and Tchetgen Tchetgen 2014),
I focus on decomposing the combined effect of multiple causes. My work also builds on
recent critiques of regression in multi-cause settings (e.g., Goldsmith-Pinkham, Hull
and Kolesár 2024; Bugni, Canay and McBride 2025), by demonstrating that common
decompositions of the causes’ combined effect have similar, undesirable properties.
I then characterize the entire set of estimands that satisfy key desirable properties
and, as a novel reporting strategy, propose reporting bounds on the set itself instead of
making an ad-hoc choice from within it.

This work also builds a bridge between the “Effects-of-Causes” (EoC) literature,
which measures causal effects, and the “Causes-of-Effects” (CoE) literature, which seeks
to explain outcomes or effects (e.g., Mill 2011 [1843]; Gelman 2011; Gelman and Im-
bens 2013). The question we consider, “Howmuch did each cause contribute to their
combined effect?” has the flavor of a CoE question. Typically, CoE questions focus on
explaining a single, realized outcome (e.g., “Did the patient recover because of a new
drug?”), where the core challenge is themissing counterfactual for a single unit, making
even the one-cause case difficult (e.g., Greenland and Robins 1988; Pearl 1999; Rosen-
baum2001; Yamamoto 2012). Instead,mywork focuses on explaining an EoC, an average
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causal effect. This shift in focus makes the single-cause case relatively straightforward
but reveals new challenges in the multi-cause case: there’s a fundamental ambiguity
over how to attribute jointly-produced effects.

Moreover, this paper is situated within marketing science’s extensive work on multi-
touch attribution (e.g., Kitts, Wei, Au, Powter and Burdick 2010; Shao and Li 2011;
Dalessandro, Perlich, Stitelman and Provost 2012; Li and Kannan 2014; Li, Kannan,
Viswanathan and Pani 2016; Du, Zhong, Nair, Cui and Shou 2019; Singal, Besbes, Desir,
Goyal and Iyengar 2022). This literature has primarily focused on finding a single best
attribution method. In contrast, I argue that the search for a single, generic answer
masks an important underlying ambiguity. While some propose circumventing this
ambiguity by formally incorporating a specific downstream decision problem, this is
often not feasible (e.g., Li, Kannan, Viswanathan and Pani 2016; Berman 2018; Kelly,
Vaver and Koehler 2018). For these common instances, I provide a formal framework
that shifts the goal from selecting a single method to transparently reporting the range
of plausible answers via attribution bounds.

Finally, this work offers a new perspective on the path-dependency problem in
decompositions (e.g. Fortin, Lemieux and Firpo 2011). The economics literature on
decompositions is epitomized by the simple Oaxaca–Blinder decomposition, which
assumes away any ambiguity in attribution (e.g., Kitagawa 1955; Oaxaca 1973; Blin-
der 1973). More generally, however, a well-known challenge is that results are said
to be path-dependent as they depend on the choice of decomposition (e.g., DiNardo,
Fortin and Lemieux 1996; Fairlie 2005; Machado and Mata 2005; Bauer and Sinning
2008; Chernozhukov, Fernández-Val and Melly 2013). In this paper’s terminology, each
decomposition takes a different stance on how to allocate credit for jointly-produced
effects. Some researchers respond by averaging over all paths, as with a Shapley value
(Shorrocks 2013), while others report results from several paths as a robustness check
(e.g., Badinski, Finkelstein, Gentzkow and Hull 2023). My work provides a formal foun-
dation for this last strategy, replacing ad hoc robustness checks with attribution bounds
that capture the full range of causal answers. This reframes the multiplicity of reason-
able decompositions not as a methodological nuisance to be averaged away, but as a
fundamental, quantifiable feature of causal attribution.
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2. Conceptual Framework

This section develops the framework for attribution presenting two complementary
arguments to define and characterize the set of causal decompositions. The analysis
demonstrates that a fundamental ambiguity arises whenever multiple causes jointly
produce an outcome. To isolate this conceptual challenge from the identification prob-
lem at the core of causal inference (Holland 1986), this section consider an idealized
setting where all counterfactuals are known, and yet the ambiguity persists. I return to
the more realistic scenario with unobserved counterfactuals in Section 3.

After establishing the notation and defining the causes’ combined effect (Section
2.1–2.2), I characterize a causal decomposition in two ways. The first is a construc-
tive argument (Section 2.3), building the definition of a causal decomposition from
the structure of the combined effect. The second is a formal argument (Section 2.4),
demonstrating that this same definition is characterized by four desirable properties.

The characterization highlights that the ambiguity in attribution is fundamental.
This finding motivates the central proposal of the paper, reporting attribution bounds,
which are the subject of the following section.

2.1. Setting: Two Sequential Causes

Here, I introduce the notation, setting, and a simple running example.
Consider an individual i subject to two sequential causes representedby the variables,

Ai1 and Ai2. Each cause takes on a specific binary treatment value: {0, 1}. For instance,
the first cause could be an ad featuring Colin Kaepernick; the treatmentAi1 = 1 indicates
an individual saw the ad, while Ai1 = 0 indicates they did not. Similarly, the second
cause could be an ad featuring Serena Williams. Thus, while there are only two causes,
there are four treatment sequences, Ai = (Ai1,Ai2), that an individual can be exposed to:

Ai = (Ai1,Ai2) ∈ A ≡
{
(0, 0), (1, 0), (0, 1), (1, 1)

}
.

After both periods, an outcome Yi ∈ Y ⊂ R is observed. This outcome could be binary,
such as a purchase decision (Y = {0, 1}), or continuous, like profit (Y = R).

To formalize the causal relationships, I use the potential outcomes framework. Each
individual’s outcomes are a function of the entire treatment sequence they receive. An
individual’s potential outcome function, Yi(·) ∈ Y = { y(·) : A → Y}, maps each hypo-
thetical treatment sequence to a counterfactual outcome. Equivalently, each individual
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FIGURE 1. A causal Directed Acyclic Graph (DAG) with two sequential causes and one
outcome. The first cause can influence the outcome and the second cause. The second
cause in turn can also influence the outcome.

has four potential outcomes, Yi(0, 0), Yi(0, 1), Yi(1, 0), and Yi(1, 1), one for each possible
treatment sequence. The observed outcome, Yi, is the potential outcome corresponding
to the realized treatment sequence: Yi = Yi(Ai1,Ai2).1

A fundamental feature of this sequential setting is that the first cause can affect
the second cause (see Figure 1). For example, seeing the Kaepernick ad, might lead
someone to see theWilliams ad or conversely, prevent them from seeing it. I model this
dynamic by introducing a potential treatment function for the second cause, Ai2(·) ∈
A2 = {a2(·) : A1 → A2}. This function is analogous to the potential outcome function: it
describes the second-period treatment individual i would receive as a function of their
first period treatment. Equivalently, each individual has a pair of potential treatments,
(Ai2(0),Ai2(1)).2 As with outcomes, the observed treatment is the potential treatment
corresponding to the realized first treatment, Ai2 = Ai2(Ai1).

Each pair of potential treatments, (Ai2(0),Ai2(1)), characterizes a treatment response
type akin to a compliance type in the Local Average Treatment Effects (LATE) framework
(Imbens and Angrist 1994). In this analogy, the first cause, Ai1, serves as the instrument
for the second cause, Ai2. For instance, an individual with (Ai2(0),Ai2(1)) = (1, 1) is an
always-taker, as they receive the second treatment regardless of the first treatment,
while an individual with (Ai2(0),Ai2(1)) = (0, 0) is a never-taker, as they never receive
the second treatment. Similarly, an individual with increasing potential treatment,
(Ai2(0),Ai2(1)) = (0, 1), is a complier as they only receive the second treatment if they
receive the first treatment. Conversely, defiers, (Ai2(0),Ai2(1)) = (1, 0), have a decreasing
response, as receiving the first treatment prevents them from receiving the second
treatment.

These components—initial treatment, potential treatment function, and potential
outcome function—jointly determine an individual’s realized outcome and all relevant

1This is the standard consistency assumption, which I apply here to outcomes and in the next
paragraph to the second-period treatment. The assumption is formalized in Section 3 when discussing
identification and estimation.

2The mediation literature refers to potential treatments as ‘potential mediator values’ (e.g., Imai,
Keele and Tingley 2010a).
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counterfactuals. Thus, this tuple describes an individual’s type.

DEFINITION 1. A type θ is a tuple (a1, a2(·), y(·)), consisting of an initial treatment, a1 ∈
A1 ≡ A1, a potential treatment function, a2(·) ∈ A2, and a potential outcome function,
y(·) ∈ Y. We denote the space of types Θ = A1 ×A2 × Y, with typical element θ ∈ Θ.

I adopt lower-case notation to describe an arbitrary type to distinguish the abstract
type from a specific individual’s realized values (like Ai1 or Yi). In general, I write a2(a1)
to highlight the second treatment’s potential to depend on the first treatment, but on
occasion, I use a2 as shorthand for the realized value a2(a1).

2.2. The Combined Effect and Its Decompositions

This subsection defines the causes’ combined effect and the general concept of a de-
composition function. To motivate the fundamental problem of attribution, I contrast
the ambiguity of multi-cause decompositions with the clarity of a single-cause scenario.
Using several examples of decomposition functions as illustrative examples, I work
to build intuition and emphasize a crucial point: decompositions are not inherently
causal. The following subsection then characterizes the subset of causal decomposition
functions, whose outputs this paper calls attribution values.

The first step is to define combined effect, the quantity that this paper seeks to
decompose.

DEFINITION 2. For θ = (a1, a2(·), y(·)) ∈ Θ, the causes’ combined effect is the difference
between the potential outcome of the realized treatment sequence and of no treatments:

τ(θ) = y(a1, a2(a1)) – y(0, 0)

This effect captures the full impact of the treatment path for causal typeθ ( y(a1, a2(a1))),
relative to a counterfactual where neither treatment occurs ( y(0, 0)). For example, amar-
keting analyst seeking to explain the increase in revenue resulting from an advertising
campaign with two ads, is interested in explaining in the combined effect, τ(θ).3

The goal is to attribute the causes’ combined effect to the two constituent causes
based on the role they played in creating it. First, we define a generic decomposition

3This definition of a combined effect is conceptually distinct from other causal effects of interest, but
they can often be seen as special cases. For instance, the effect of a fixed treatment bundle, (x1, x2) ∈ A,
is y(x1, x2) – y(0, 0). This corresponds to the combined effect τ(θ̃) for type θ̃ = (ã1, ã2(·), y(·)) with initial
treatment ã1 = x1 and constant potential treatments ã2(·) = x2.
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function as a function that splits the combined effect into two components, one for
each cause.

DEFINITION 3. A decomposition is a vector-valued function ψ : Θ→ R2, that maps a type,
θ ∈ Θ, to a vector, (ψ1(θ),ψ2(θ)), that sums to the corresponding combined effect:

ψ1(θ) +ψ2(θ) = τ(θ)

By convention, ψt is the component corresponding to the tth cause for t = 1, 2. The space of all
such decomposition functions is denoted Ψ.

This definition is primarily mathematical; its only causal feature is that the compo-
nents must sum to the combined effect, τ(θ). Beyond that, it permits arbitrary rules.
Consider for instance, Last Touch Attribution, a widely used approach in advertising
(Econsultancy and Google Analytics 2012; Quantcast 2012).

EXAMPLE 1 (Last Touch Attribution). Last Touch Attribution gives the entire combined effect
to the cause that provided the last treatment:ψLT(θ) =

(
a1[1–a2] , a2

)
τ(θ). In our advertising

example,ψLT(θ) = (0, τ(θ)) whenever one sees the second ad (a2 = 1), whileψLT(θ) = (τ(θ), 0)
if they only see the first ad (a1 = 1, a2 = 0). This method is appealing because of its simplicity,
but it does not assign credit based on each causes’ effects. For instance, even if the first ad
is solely responsible for the outcome (e.g., y(x1, x2) = x1), the second ad will receive credit
whenever one sees it.

To apply causal language to decompositions like Last Touch Attribution would be
misleading: even though the combined effect has a causal interpretation, the credit
assigned to each cause is entirely divorced from the underlying causal structure. This
highlights the need for a principled distinction between arbitrary decompositions and
those that are causal. The following subsections provide this distinction by formally
characterizing the set of causal decompositions, which formally excludes heuristic
methods like Last Touch Attribution.

A more principled approach is to use a sequential decomposition, which attributes
the combined effect by “turning off” the causes one by one, attributing the change in
potential outcomes at each step to the manipulated cause. This approach immediately
leads to two important sources of variation. First, in what order should the causes be
turned off? Second, how should the other causes be handled during the manipulation:
by exogenously holding them fixed or by letting them endogenously respond to the
change? The following examples illustrate how these choices lead to different, equally
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principled decompositions. I begin with exogenous sequential decompositions, which
hold other treatments fixed during manipulation.

EXAMPLE 2.1 (Exogenous Sequential Decompositions). An exogenous sequential decom-
position turns off one cause at a time while holding the other treatment fixed; this yields two
decompositions depending on the order of manipulation. The first decomposition, ψexogSD,1,
corresponds to turning off the first cause and then the second. It first attributes to the first cause,
the effect of its removal while holding the second fixed, and then attributes the remaining effect
to the second cause:

ψexogSD,1(θ) =
(
y(a1, a2) – y(0, a2) , y(0, a2) – y(0, 0)

)
The second decomposition, ψexogSD,2, reverses this by first turning off the second cause and
then the first. It first attributes to the second cause, the effect of its removal while holding the
first fixed, and then attributes the remaining effect to the first cause:

ψexogSD,2(θ) =
(
y(a1, 0) – y(0, 0) , y(a1, a2) – y(a1, 0)

)
Unlike Last Touch Attribution (Example 1), both decompositions assign each cause credit
based on a well-defined manipulation of the respective cause.

The exogenous approach assigns each cause credit based on a manipulation that
holds other causes fixed. An alternative is the endogenous sequential decomposition,
which assigns credit based on a different manipulation: the effect of turning off a cause,
while allowing other causes to respond endogenously.

EXAMPLE 2.2 (Endogenous Sequential Decompositions). An endogenous sequential de-
composition turns off one cause at a time, allowing the other cause’s treatment to respond
endogenously; for instance, turning off the first cause, can change the second treatment from
a2(a1) to a2(0). This yields two additional decompositions depending on the order of manipu-
lation. The first, ψendogSD,1, turns off the first cause and then the second. It attributes to the
first cause the effect of its removal, including any downstream effects on the second cause, and
then attributes the remaining effect to the second cause:

ψendogSD,1(θ) = ( y(a1, a2(a1)) – y(0, a2(0)) , y(0, a2(0)) – y(0, 0))

The second decomposition, ψendogSD,2, reverses this by turning off the second cause and then
the first. Because of the causes’ sequential nature, an intervention on the second cause cannot
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affect the first; here, allowing the first cause to respond endogenously is the same as holding it
fixed. The decomposition first attributes to the second cause the effect of its removal, and then
attributes the remaining effect to the first:

ψendogSD,2(θ) = ( y(a1, 0) – y(0, 0) , y(a1, a2(a1)) – y(a1, 0))

As with the exogenous sequential decompositions (Example 2.1), both endogenous sequential
decompositions assign each cause credit based on a well-defined manipulation of the respective
cause.

Intuitively, each of these sequential decomposition appears to be causal in the sense
that each cause gets credit for the effect of a well-defined manipulation. However, they
will generally disagree: the sequential decompositions coincide only when there are no
interaction effects or indirect effects.4

Thismultiplicity of causallymeaningful decompositions presents a challenge: which
one should a researcher choose? One prominent solution is based on the Shapley value,
which resolves the ordering problem by averaging (Shapley 1952; Heskes et al. 2020).

EXAMPLE 3 (Causal Shapley Values). Originating from cooperative game theory, the Shapley
value offers a specific solution to the ordering problem by treating each ordering symmetrically.
It assigns credit by averaging a cause’s contributions across all possible orderings of a given
family of sequential decomposition. The difference between these two variants depends on the
set of sequential decompositions being averaged (see Example 2.1 and 2.2):

ψexogSV =
1
2

(
ψexogSD,1(θ) +ψexogSD,2(θ)

)
ψendogSV =

1
2

(
ψendogSD,1(θ) +ψendogSD,2(θ)

)
I refer to the resulting Shapley value variants as an exogenous and endogenous Shapley value,
respectively.

Despite its appeal, the Shapley value is not a silver bullet: averaging exogenous
sequential decompositions will, in general, give a different answer than averaging
endogenous sequential decompositions. Indeed, Heskes et al. (2020) note that what this
paper calls the exogenous and endogenous Shapley values coincide only if there are no
indirect effects.

4We define these effects more carefully in the next subsection.
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Moreover, the Shapley value’s symmetric average is just one possible summary. In
fact, anyweighted average across the family of sequential decompositions can constitute
a meaningful summary, potentially mixing exogenous and endogenous sequential
decompositions. Non-uniform weights are particularly appropriate when there are
substantive reasons to favor certain sequential decompositions. If a researcher believes
one sequence of policy interventions is more plausible or relevant than another, they
could use weights that reflect this prior belief. This flexibility highlights the core issue:
without a substantive reason for choosing among them, the number of decompositions
that are plausibly causal is infinite, underscoring the fundamental ambiguity of multi-
cause attribution.

The conceptual distinction between a decomposition and a causal decomposition
arises only in settings with multiple causes. With only one binary cause, there is only
one decomposition function and it is inherently causal. Here, the type reduces to θ̃ =
(ã, ỹ(·)), for binary treatment ã ∈ {0, 1} and potential outcome function ỹ(·) : {0, 1}→ R.
The combined effect is the difference in potential outcomes, τ(θ̃) = ỹ(ã) – ỹ(0). Any
decomposition must assign this entire quantity to the sole cause, meaning there is
only one possible rule: ψ(θ̃) = τ(θ̃). While practical challenges of identification and
estimation remain, the conceptual task is unambiguous.

This clarity is lost when a second cause is introduced. The single, unambiguous
answer with one cause gives way to a multiplicity of principled, yet conflicting, decom-
positions. The following subsections characterize this space of causal decompositions,
establishing that the resulting ambiguity is fundamental.

2.3. A Constructive Definition of Causal Decompositions

This section develops the constructive argument that underpins the proposed definition
of a causal decomposition. First, I deconstruct the causes’ combined effect into its
constituent causal pathways via a simple algebraic identity. This representation reveals
a natural partition of the combined effect into components that are unambiguously
attributable to a single cause and those that are jointly-produced by both causes, and
thus ambiguous. This structure leads directly to our definition of a causal decomposition
as a rule that assigns each cause its individually produced effects plus a share of its
jointly-produced effects. The section concludes by illustrating how existing methods fit
into this framework: while some correspond to specific causal decompositions, others
do not.

To understand how to attribute the combined effect, τ(θ), it helps to first understand
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its structure. The combined effect is not a single, indivisible quantity. Rather, it is
composed of a few primitive causal relationships: the standalone effect of each cause on
the outcome ( y(1, 0) – y(0, 0) and y(0, 1) – y(0, 0)), the non-additive interaction between
them ( y(1, 1) – y(0, 1) – ( y(1, 0) – y(0, 0))), and the effect of the first cause on the second
(a2(1) – a2(0)). The following lemma shows that the combined effect can be algebraically
rewritten as the sum of five distinct components, each representing a product of these
primitive effects.

LEMMA 1. For type, θ ∈ Θ, the combined effect, τ(θ), can always be written as the sum of the
following five component effects:

τ(θ) = D1(θ) + D2(θ) + I(θ) + XD(θ) + XI(θ)

where each component is defined as:

D1(θ) =
[
y(1, 0) – y(0, 0)

]
a1 1st Direct Effect

D2(θ) =
[
y(0, 1) – y(0, 0)

]
a2(0) 2nd Direct Effect

I(θ) =
[
y(0, 1) – y(0, 0)

]
(a2(1) – a2(0)) a1 Indirect Effect

XD(θ) =
[
y(1, 1) – y(0, 1) – ( y(1, 0) – y(0, 0))

]
a2(0)a1 Direct Interaction

XI(θ) =
[
y(1, 1) – y(0, 1) – ( y(1, 0) – y(0, 0))

]
(a2(1) – a2(0)) a1 Indirect Interaction

PROOF. All proofs for this section are provided in Appendix A

The first step in building the definition is to sort these five effects into two groups
based on their source: individually-produced effects, which isolate the impact of a single
cause, and jointly-produced effects, which depend on both. The two direct effects, D1(θ)
and D2(θ), are individually-produced, as they isolate the effect of each cause in a world
without the other. In contrast, the remaining three effects, I(θ),XD(θ) and XI(θ), are
jointly-produced as they depend on both causes. For instance, the indirect effect, I(θ),
requires both an effect of cause 1 on cause 2 and an effect of cause 2 on the outcome.
Similarly, the direct interaction effect, XD(θ), represents the incremental, synergistic
effect of having both causes present, above and beyond their individual contributions.
The indirect interaction effect, XI(θ), in turn, requires both the same synergistic effect
and an effect of cause 1 on cause 2. Each jointly-produced effect is fundamentally the
result of both causes.

Individually-produced effects present no attributional ambiguity: each cause de-
serves full credit for the effects it produces alone. The direct effect of the first cause,
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D1(θ), isolates the effect of the first cause in a world where the second cause is absent.
This is effectively the case of a single cause, where there is no ambiguity: this effect is
due entirely to the first cause. The same logic applies to the second direct effect, D2(θ),
which isolates the effect of the second cause in a world without the first: this effect is
due entirely to the second cause.

In contrast, jointly-produced effects are at the heart of the ambiguity because each
cause has a defensible, competing claim to credit. For the indirect effect, I(θ), one could
credit the initial (first) cause for setting the chain of events in motion or the proximate
(second) cause for directly affecting the outcome. For the direct interaction effect,XD(θ),
one could argue the first cause deserves the credit because removing it would eliminate
the interaction effect, yet an identical argument assigns credit entirely to the second
cause. The indirect interaction effect, XI(θ), combines these issues: one must contend
with how to share credit for both the interaction component and the indirect pathway
through which it operates.

This logic provides a simple recipe for constructing a causal decomposition: assign
the individually-produced effects entirely to their sole cause, while allowing for any
split of the jointly-produced ones. The following definition formalizes this.

DEFINITION 4. A causal decomposition (or attribution rule),ψ, is a decomposition,ψ ∈ Ψ,
that assigns to each cause its full direct effect, plus a share of each of the three jointly-produced
effects, governed by the sharing parameters (λ1, λ2, λ3) ∈ [0, 1]3:

ψ1(θ) = D1(θ) + λ1I(θ) + λ2XD(θ) + λ3XI(θ)

ψ2(θ) = D2(θ) + (1 – λ1)I(θ) + (1 – λ2)XD(θ) + (1 – λ3)XI(θ)

Let Ψc denote the set of causal decompositions. The output of a causal decomposition is called
an attribution value.

This definition of a causal decomposition, captures a wide set of decompositions
grounded in the causal pathways that come together to create the combined effect.
Moreover, it emphasizes that the fundamental ambiguity in attribution arises from an
ambiguity in how to share credit for jointly-produced effects. In the next subsection,
I complement this constructive argument with a formal one. There, I show that this
same set of decompositions is uniquely characterized by four fundamental properties,
providing a dual justification for this definition.

With this characterization in hand, I now reexamine how existing attribution meth-
ods fit within the framework. As the following examples from our earlier discussion
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illustrate, some common methods are causal decompositions, each representing a
specific choice of the sharing parameters, λ, while others are not.

EXAMPLE 1 (Last Touch Attribution, continuing from p. 9). Last Touch Attribution is
not a causal decomposition: no choice of sharing parameters λ(θ) ∈ [0, 1]3 can reproduce it.
Crucially, even if the only non-zero effect is the first cause’s direct effect, D1(θ), the second
cause could receive all of the credit, violating the core principle that individually-produced
effects should be assigned entirely to the cause that generated them.

EXAMPLE 2 (Sequential Decompositions, continuing from p. 10). Each of the four sequen-
tial decompositions we introduced are causal decompositions. Depending on the sequence
being considered, the exogenous sequential decompositions correspond to sharing parameters
λexogSD,1 = (0, 1, 1) or λexogSD,2 = (0, 0, 0) as they always give the indirect effect to the second
cause. Similarly, the endogenous sequential decompositions correspond to sharing parame-
ters λendogSD,1 = (1, 1, 1) or λendogSD,2 = (0, 0, 0) as all of the jointly-produced effects can go
entirely to either cause. The choice of exogenous versus endogenous sequential decompositions
corresponds to choosing which cause gets credit for the indirect effect, while the sequence one
chooses determines which cause gets credit for the interaction effects.

EXAMPLE 3 (Causal Shapley Values, continuing from p. 11). Both Shapley values are
causal decompositions. exogenous Shapley values correspond to sharing parameter, λexogSV =
(0, 1/2, 1/2), as the indirect effect goes fully to the second cause, while the interaction effects are
split equally. In contrast, the endogenous Shapley value corresponds to the sharing parameters,
λendogSV = (1/2, 1/2, 1/2), as each jointly-produced effect is split equally between both causes.

Ultimately, this characterization provides a common language for discussing and
comparing different approaches to attribution. By parameterizing attribution in terms
of the different ways one could assign credit for jointly-produced effects, this character-
ization promotes transparency: a researcher who prefers a specific decomposition is
prompted to justify their choice of sharing parameters. This perspective also suggests a
path toward drawing robust conclusions in the face of ambiguity: report the full range
of credit assigned according to different causal decompositions. These bounds trans-
parently communicate the fundamental ambiguity inherent in the problem. I formalize
the concept of attribution bounds in Section 3.

2.4. A Formal Foundation for Causal Decompositions

While the constructive definition of a causal decomposition (Definition 4) has a strong,
intuitive appeal, this section provides a complementary, formal justification. The ar-
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gument proceeds in two steps. First, I propose three properties — Linearity, No Credit
for No Effect, and No Blame for No Harm — and show that they characterize the set
of causal decompositions for non-defiers (where the potential treatments are weakly
increasing). Second, I introduce a final property, Symmetry of Causal Changes, that
extends the characterization to the more complex case of defiers.

The first property, Linearity, is a standard regularity condition ensuring that a de-
composition behaves as expected when outcomes are scaled or combined. It has two
intuitive components. First, if we have two outcomes for a given unit (e.g., expenditure
on fruit and vegetables), assigning credit for their sum should be equivalent to the sum
of their individual credit assignments. Second, if an outcome is scaled by a constant
(e.g., changing units from dollars to cents), the credit assigned should scale by the same
constant.

PROPERTY 1 (Linearity). A decomposition,ψ ∈ Ψ, satisfies Linearity if for every scalar c ∈ R,
type, θ = (a1, a2(·), y(·)) ∈ Θ, and potential outcome function, ỹ(·) ∈ Y, we have:

(i) Additivity: ψ(a1, a2(·), y(·) + ỹ(·)) = ψ(a1, a2(·), y(·)) + ψ(a1, a2(·), ỹ(·))

(ii) Homogeneity of Degree 1: ψ (a1, a2(·), c × y(·)) = c ×ψ (a1, a2(·), y(·))

The next two properties restrict the behavior of causal decompositions based on
the presence and sign of causal effects. To formalize these properties, I first define the
following marginal effects.

DEFINITION 5. For t = 1, 2, the tth causes’ marginal effects are differences in potential
outcomes resulting from a single, incremental change in the tth treatment, holding other
treatments fixed. For θ = (a1, a2(·), y(·)) ∈ Θ, these are:

• First cause’s marginal effect: m1(b2; θ) = y(1, b2) – y(0, b2) for b2 ∈ {0, 1}

• Second cause’s marginal effect: m2(b1; θ) = y(b1, 1) – y(b1, 0) for b1 ∈ {0, 1}

• Marginal indirect effect: m1→2(b1; θ) = y(b1, a2(1)) – y(b1, a2(0)) for b1 ∈ {0, 1}

The second property, No Credit for No Effect, states that a cause should receive zero
credit if it does nothing, either because its treatment cannot be realized or because it
has no marginal effect.

PROPERTY 2 (No Credit for No Effect). A decomposition, ψ ∈ Ψ, satisfies No Credit for No
Effect if for every θ = (a1, a2(·), y(·)) ∈ Θ:
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(i) If Cause 1 is inactive (a1 = 0) or has no marginal effects, m1( · ; θ) = m1→2( · ; θ) = 0, it
receives no credit: ψ1(θ) = 0.

(ii) If Cause 2 cannot occur (a2(0) = a2(1) = 0) or has no marginal effects, m2( · ; θ) = 0, it
receives no credit: ψ2(θ) = 0.

The third property, No Blame for No Harm, formalizes the intuition that a cause
should receive non-negative credit if it is always helpful. A cause is always helpful if its
marginal effects and indirect marginal effects are all weakly positive and increasing.

PROPERTY 3 (No Blame for No Harm). A decomposition, ψ ∈ Ψ, satisfies No Blame for No
Harm, if for every θ ∈ Θ:

(1) m1(1; θ) ≥ m1(0; θ) ≥ 0 and m1→2(1; θ) ≥ m1→2(0; θ) ≥ 0, implies ψ1(θ) ≥ 0

(2) m2(1; θ) ≥ m2(0; θ) ≥ 0 and m1→2(1; θ) ≥ m1→2(0; θ) ≥ 0, implies ψ2(θ) ≥ 0

For the class of non-defiers, types where the first treatment does not inhibit the
second treatment (a2(1) ≥ a2(0)), these three properties precisely characterize the set
of causal decompositions.

PROPOSITION 1. For a decomposition, ψ ∈ Ψ, the following two conditions are equivalent
on the set of non-defiers, {(a1, a2(·), y(·) : a2(1) ≥ a2(0)}:

(i) ψ satisfies Linearity, No Credit for No Effect, and No Blame for No Harm (Properties 1,
2, and 3)

(ii) ψ is a causal decomposition, ψ ∈ Ψc

This result provides a strong foundation, but notably excludes defiers, where the
first treatment prevents the second treatment (a2(1) < a2(0)). Relying on only these
three properties allows for an undesirable inconsistency in the underlying logic of attri-
bution: defiers and non-defiers could have different sharing parameters. For example,
a decomposition might credit the first cause for an indirect effect among compliers,
while crediting the second cause among defiers. This is internally inconsistent: if a
decomposition’s logic is to blame the first cause for inhibiting an effect among defiers,
that same logic should lead it to reward the first cause for instigating it among compliers.

To enforce this logical consistency, I introduce a final property: Symmetry of Causal
Changes. This property says that enabling a complier causal pathway, should be re-
warded the same as disabling an inhibitory causal pathway.
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PROPERTY 4 (Symmetry of Causal Changes). A decomposition, ψ ∈ Ψ, satisfies Symmetry
of Causal Changes if for any y(·) ∈ Y and a1 ∈ A1, the difference in credit between a complier
(aC2 (x1) = x1) and a never-taker (a

NT
2 (x1) = 0), is equivalent to the difference in credit between

an always taker (aAT2 (x1) = 1) and a defier (aD2 (x1) = 1 – x1):

ψ
(
a1, aC2 (·), y(·)

)
–ψ

(
a1, aNT2 (·), y(·)

)
= ψ

(
a1, aAT2 (·), y(·)

)
–ψ

(
a1, aD2 (·), y(·)

)
This property bridges the non-defier and defier worlds, so that these four properties

taken together precisely characterize the set of causal decompositions for all types.

THEOREM 1. A decomposition, ψ ∈ Ψ, satisfies Linearity, No Credit for No Effect, No Blame
for No Harm, and Symmetry of Causal Changes if and only if it is a causal decomposition,
ψ ∈ Ψc.

This theorem provides the formal counterpart to the constructive argument. It es-
tablishes that the structure of a causal decomposition in Definition 4 is not merely an
intuitive choice, but also a necessary consequence of four properties a causal decompo-
sition ought to satisfy.

The main implication of Definition 4 and Theorem 1 is that the ambiguity in at-
tribution is fundamental and is parameterized by the choice of sharing parameters,
(λ1, λ2, λ3). This insight shifts the research objective: instead of seeking a single correct
answer, the goal becomes transparently reporting the range of plausible answers. To
this end, I advocate for reporting attribution bounds: the minimum and maximum
credit assigned to each cause across all causal decompositions. This practice makes the
inherent ambiguity explicit. Moreover, the framework provides a common language for
researchers who wish to narrow this range by allowing them to translate their substan-
tive justifications directly into transparent restrictions on the sharing parameters. The
following section formalizes these bounds and discusses how they can be identified
and estimated in practice.

3. Identification and Estimation of Attribution Bounds

This section introduces a statistical framework for defining, identifying, and estimating
attribution bounds. I define the estimand, attribution bounds, as bounds on the set
of average attribution values. I then present two identification strategies: one design-
based and one observational. The first result is negative: attribution bounds cannot
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be identified by design alone. As a solution, I propose a simple condition on the signs
of the average joint effects which, when met, enables identification by design. I show
that this design-based approach hinges on the ability to randomize eligibility to re-
ceive treatment, rather than randomizing treatment itself. In contrast, identification is
more straightforward in observational settings, at the expense of relying on a stronger
assumption. I demonstrate that under a standard sequential unconfoundedness assump-
tion (Imai et al. 2010b), the attribution bounds are point-identified. For both settings, I
provide estimators and methods for constructing confidence intervals.

3.1. Statistical Setup and Experimental Design

This section introduces a statistical framework that incorporates Holland’s fundamental
problem of causal inference —missing potential outcomes — and statistical uncertainty
(Holland 1986). In the process, I formalize the experimental instruments and the causal
model that link observed data to latent potential outcomes and potential treatments.

Suppose a random sample of N individuals (i = 1, . . . ,N) is drawn from an infinitely
large population. For each individual i, the realized outcome, Yi, and sequence of
treatments, Ai = (Ai1,Ai2) ∈ A, are observed. As before, each individual has a latent
potential outcome function, Yi(·) : A → R, but now the data-generating process for
treatments is explicitly modeled to incorporate their dependence on experimental
interventions.

To formalize our experimental design, I introduce two experimental instruments.
First, individuals are assigned indicators, Fi = (Fi1,Fi2) ∈ {0, 1}2 ≡ F, determining if
they receive treatment endogenously (Fit = 1) or exogenously (Fit = 0). Second, they
are assigned an exogenous treatment sequence, Asi = (Asi1,A

s
i2) ∈ A.5 These experi-

mental instruments jointly determine individual i’s realized treatment, Ait, in each
period t. When treatment is endogenous (Fit = 1), the individual’s realized treatment
is determined by their own potential treatment function, representing their natural
behavior. When treatment is exogenous (Fit = 0), this behavior is overridden, and their
realized treatment is set toAsit. For example, Fi = (0, 0) withA

s
i = (0, 0) indicates that both

treatments are to be exogenously set to 0, a pure control, while Fi = (1, 1) corresponds
to observational data.

The role of these experimental instruments necessitates new notation for potential
treatments. Let Ai1(1) denote the treatment individual i would endogenously receive in
period 1 (i.e., if Fi1 = 1). This is their baseline behavior in the first period. For the second

5The superscript ‘s’ can be read as ‘set’, denoting the treatment ‘set’ by the experimenter when Fit = 0.

19



cause, the potential treatment can depend on the first treatment. Let Ai2(a1, 1) represent
the treatment individual i would receive in the second period if the first treatment had
been a1 ∈ A1 and the second-period treatment were endogenous (i.e., if Fi2 = 1). This
notationhighlights an asymmetry: potential treatments are definedonlywhen treatment
is endogenous (Fit = 1). This is because potential variables represent an immutable,
intrinsic characteristic of an individual. In contrast, an exogenous assignment, like Asit,
is a feature of the experimental protocol, not a latent attribute of the individual.

The following assumption formalizes the relationships between potential variables,
experimental instruments, and observed data.

ASSUMPTION 1 (Causal Model). For each individual i, the observed outcome Yi and observed
treatments Ai are generated as follows:

Yi = Yi(Ai)

Ai1 = Ai1(1)Fi1 + A
s
i1(1 – Fi1)

Ai2 = Ai2(Ai1, 1)Fi2 + A
s
i2(1 – Fi2)

where the potential outcomes function Yi(·) and potential treatment function Ait(·) are un-
derstood to be intrinsic properties of the individual that do not depend on the assignments of
other individuals.

Assumption 1 bundles three foundational concepts. First, it states the consistency of
outcomes and treatments: the observed variables are equal to their corresponding po-
tential counterparts evaluated at the realized treatment and instrument values. Second,
it implies no cross-unit spillovers (no interference) by defining potential outcomes and
treatments for individual iwithout reference to the treatments or assignments of others.
Third, it encodes an exclusion restriction: the experimental instruments (Fit,Asit) affect
outcomes and future treatments only through their effect on the realized treatment in
that period, Ait.

3.2. The Estimand: Attribution Bounds

Here, I define the primary estimand: attribution bounds. I then express the attribution
bounds as the minimum/maximum of a linear combination of six counterfactual quan-
tities. This representation reveals an important identification challenge: two of these
quantities are cross-world counterfactuals, which are unidentifiable from experimental
data alone.
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This paper introduces attribution bounds as its primary estimand. These bounds are
designed to communicate the full rangeof expected attribution values,E[ψt(A1,A2(·), Y (·))],
that can arise from different causal decompositions, ψ ∈ Ψc.

DEFINITION 6. The attribution bounds for the tth cause, [V t , V t ], are the minimum and
maximum expected attribution values over the set of all valid causal decompositions, ψ ∈ Ψc:

V t ≡ min
ψ∈Ψc

E
[
ψt (A1,A2(·), Y (·))

]
and V t ≡ max

ψ∈Ψc
E
[
ψt (A1,A2(·), Y (·))

]
The attribution bounds, [V t , V t ], represent a set of estimands, not an identified

set for a single estimand. This is a critical distinction. An identified set reflects the
range of answers the data cannot distinguish between for a single question. In contrast,
attribution bounds reflect the ambiguity in the question: each causal decomposition
represents a different causal question. Indeed, the data may be sufficient to point-
identify the answer to every such question, even though they cannot dictate which
question is the right one to ask.

The characterization of causal decompositions (Definition 4) makes it possible to
express the attribution bounds as the solution to a simple linear optimization problem.

LEMMA 2. For t ∈ {1, 2}, the attribution bounds, [V t , V t ], are the minimum and maximum
values of the following function evaluated over the set λ = (λ1, λ2, λ3) ∈ [0, 1]3:

Vt(λ) = E[Y (0, 0)]× (λ2 – 1) (i)

+ E[Y (A1(1), 0)]× (1{t = 1} – λ2) (ii)

+ E[Y (0,A2(0, 1))]× (1{t = 2} – λ1 – λ2 + λ3) (iii)

+ E[Y (0,A2(A1(1), 1))]× (λ1 – λ3) (iv)

+ E[Y (A1(1),A2(0, 1))]× (λ2 – λ3) (v)

+ E[Y (A1(1),A2(A1(1), 1))]× λ3 (vi)

PROOF. All proofs for this section are provided in Appendix B

This lemma highlights that identification hinges on six counterfactual quantities.
Moreover, it reveals why the bounds are not identified by design alone: terms (iv)
and (v) are cross-world counterfactuals. Term (iv), E[Y (0,A2(A1(1), 1))], for instance,
describes an outcome where the first treatment is set exogenously to 0, but where the
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second treatment occurs as if the first treatment had been endogenous (A1(1)). The
very act of enforcing the first condition via an experimental manipulation renders the
second condition unobservable, ensuring these terms cannot be identified by design.
To juxtapose the cross-world counterfactuals, I refer to the other four terms (i, ii, iii,
and vi) as single-world counterfactuals because they correspond to outcomes from a
single counterfactual. For instance, term (iii),E[Y (0,A2(0, 1))], describes an outcome and
potential treatment where the first treatment is set exogenously to 0 and the treatment
for the second cause is determined endogenously (Fi2 = 1).

The following subsections propose two different strategies for overcoming this diffi-
culty. First, to achieve design-based identification, Section 3.3 proposes a simple assump-
tion on the sign of the jointly-produced effects that, if satisfied, ensures the attribution
bounds do not depend on the cross-world counterfactuals. Second, in observational
settings (Section 3.4), I consider a stronger assumption, sequential unconfoundedness,
which identifies all of the relevant counterfactuals, including the cross-world ones.

3.3. Design-Based Identification, Estimation and Inference

This section introduces a general class of experimental designs and shows that no
designwithin this class can identify the attribution bounds without further assumptions.
However, I show that if the average jointly-produced effects have the same sign, the
attribution bounds can be identified by design. I characterize the minimal class of
experiments, partial eligibility designs, that are sufficient for identification under the
proposed condition. Moreover, I show that a subset of partial eligibility designs, which
I call eligibility designs, are weakly more informative when the true bounds are non-
trivial (that is, when they do not collapse). Finally, I provide estimators and confidence
intervals for attribution bounds estimated by a partial eligibility experiment.

3.3.1. Identification

To start, I introduce a broad space of experimental designs where the experimental
instruments are randomly assigned and individuals have at least some probability of
being intervened on.

DESIGN 1. An experimental design, P ∈ E ⊂ ∆(F × A), is a distribution over the exper-
imental instruments, (Fi,Asi ) ∼ P, that (i) exogenously assigns treatment with a positive
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probability and (ii) is independent of potential variables:

E =
{
P ∈ ∆(F× A) : P(F = (1, 1)) < 1 ,(

F,As
)
⊥
(
{Y (a)}a∈A , A1(1) , {A2(a1, 1))}a1∈A1

) }
In this general class of designs, an experimenter can randomize both which treat-

ments are free to vary endogenously, Fit, and what treatments they receive when they
are not, Asi . Despite this flexibility, no design can point-identify the attribution bounds
on its own because they depend on the cross-world counterfactuals (Lemma 2).

PROPOSITION 2. Suppose Assumption 1 holds. There is no experimental design P ∈ E that
point-identifies the attribution bounds.

To resolve the identification challenge posed by the cross-world counterfactuals,
I introduce a new assumption on the signs of the average jointly-produced effects.
When met, this assumption ensures that the attribution bounds do not depend on the
unidentifiable cross-world counterfactuals.

ASSUMPTION 2 (Sign-Aligned Joint Effects). The average indirect effect, E[I(A1,A2(·), Y (·))],
average direct interaction effect, E[XD(A1,A2(·), Y (·))], and average indirect interaction effect,
E[XI(A1,A2(·), Y (·))] are all weakly of the same sign (i.e., they are all ≥ 0 or ≤ 0).

Assumption 2 posits that the joint effects of the causes all go in the same direction.
This condition holds, for instance, if the first cause always makes the second one more
likely, the second cause on its own is always helpful, and both causes always have a
positive interaction effect. Crucially, however, this condition applies to average effects,
allowing for individual-level heterogeneity where some units may not conform to the
overall trend. A special case where the assumption mechanically holds is when the
first cause has no effect on the second. Conversely, the assumption would be violated if
there was a positive indirect effect, but the causes are substitutes (i.e., have a negative
interaction effect).

This assumption does not help us identify the cross-world counterfactuals. Rather, it
ensures they drop out of the optimization problem in Lemma 2, making them irrelevant
for the attribution bounds. Interestingly, this highlights that it can be easier to identify
the attribution bounds than to identify the expected attribution values for a specific
causal decomposition, which may still depend on these unidentifiable terms.

Even with Assumption 2, however, not all experimental designs generate the neces-
sary variation to identify the attribution bounds. For instance, the class of experimental
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designs is broad enough to include trivial designs that deterministically put everyone in
a pure control group. This motivates defining a minimal class of experimental designs
that achieve point-identification.

DESIGN 2. A partial eligibility design, P ∈ EPE, is an experimental design that (a) has full
support over which treatments can be endogenous responses and (b) has a positive probability
of assigning individuals to receive no treatment in each period:

EPE =
{
P ∈ E : P(F = f ) > 0 ∀ f ∈ F ,

P
(
As = (0, 0)|F = (0, 0)

)
> 0 ,

P(Ast = 0|Ft = 0, F–t = 1) > 0 ∀t ∈ {1, 2}
}

The conditions of a partial eligibility design are precisely what is needed to identify
the four single-world counterfactuals that determine the bounds under Assumption 2.
Condition (a) ensures that with positive probability one observes outcomes under all
four combinations of endogenous/exogenous treatments, while condition (b) ensures
that with positive probability one can isolate the effects of endogenous behavior against
a common baseline (no treatment). These support restrictions are both necessary and
sufficient.

PROPOSITION 3. Under Assumptions 1 and 2, an experimental design, P ∈ E, point identifies
the attribution bounds if and only if it is a partial eligibility design, P ∈ EPE.

While all partial eligibility designs are sufficient for identification, some are better
than others. Here, I characterize a subclass that is optimal whenever the bounds are
non-trivial (i.e., V t < V t).

DESIGN 3. An eligibility design, P ∈ EE, is a partial eligibility design that assigns individu-
als to the control group, Ait = 0, whenever treatment is exogenously set, Fit = 0. Formally:

EE =
{
P ∈ EPE : P

(
Ast = 0|Ft = 0

)
= 1∀t

}
An eligibility design is conceptually simple: it randomizes eligibility to receive treat-

ment. In each period, an individual is either eligible to receive treatment and does so
as a function of their potential treatments (Fit = 1), or they are ineligible to receive
treatment (Fit = 1, Asit = 0). This experiment isolates the variation needed for identifying
the attribution bounds under Assumption 2 by only allocating units to one of the four
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relevant, single-world counterfactual means. The following proposition clarifies the
sense in which eligibility designs are preferable to partial-eligibility designs.

PROPOSITION 4. Let P ∈ EPE be any partial-eligibility design. There exists an eligibility
design P′ ∈ EE that is weakly more efficient for estimating the four single-world counterfactu-
als.6 Moreover, if the true bounds are non-trivial (V t < V t), this efficiency gain extends to the
estimation of the attribution bounds.

Intuitively, anyother partial eligibility design expends subjects on experimental arms
that are not informative of the single-world counterfactuals. By allocating all exogenous
treatments to control, eligibility designs can achieve lower asymptotic variance for
thesemeans. The gain in asymptotic variance for the attribution bounds follows directly
from this, with one nuance.When the true bounds are distinct (V t < V t), the bounds can
be estimated by a smooth function of the efficiently estimated means, thus inheriting
their efficiency. This argument fails only when the bounds collapse (V t = V t), as they
are no longer a locally-differentiable function of the means, and standard asymptotic
optimality arguments break down. Despite this nuance, eligibility designs are the clear
practical choice: they are more efficient for estimating the single-world counterfactual
means, which are often of independent interest, and for estimating the bounds across
nearly the entire parameter space.

3.3.2. Estimation and Inference

Given data from a partial eligibility design, I show how one can estimate attribution
bounds and provide methods for constructing confidence intervals. The estimation
strategy is straightforward: first, estimate the four key counterfactual means using an
inverse probability weighted (Horvitz-Thompson) estimator to account for the experi-
mental design. Second, use these estimates to form a plug-in estimator for the bounds.
I then characterize the non-normal asymptotic distribution of this estimator and pro-
vide a simulation-based algorithm for constructing asymptotically valid confidence
intervals.

Under Assumption 2, the optimization problem in Lemma 2 simplifies, and the
bounds become the minimum and maximum of two specific linear combinations of

6Formally, assuming finite variance for all potential outcomes, the asymptotic variance of any regular
and asymptotically linear (RAL) estimator for the means is weakly lower under P′ than under P. The class
of RAL estimators includes standard estimators like the sample mean, OLS, and AIPW.
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the four single-world counterfactuals means. These two linear combinations are char-
acterized by, Ṽt(λ) for λ ∈ {0, 1}:

Ṽt(λ) = E[Y (0, 0)]× (λ – 1) + E[Y (A1(1), 0)]× (1{t = 1} – λ)

+ E[Y (0,A2(0, 1))]× (1{t = 2} – λ) + E[Y (A1(1),A2(Ai1(1), 1))]× λ

The proposed estimators target these two quantities, Ṽt(0) and Ṽt(1), and reports the
lesser (greater) of the two as estimates of the lower (upper) attribution bounds. Though
the estimator will work with any partial eligibility design, the estimator’s structure
reveals that it only uses data from the four experimental arms corresponding to the
single-world counterfactuals. This reinforces the efficiency of the eligibility design,
which concentrates the entire sample on these informative arms.

ESTIMATOR 1 (Plug-In Estimator). First, estimate the four single-world counterfactual
means, µ f for f ∈ F. For each mean, define an individual inverse probability weighted (IPW)
outcome, Zi, f , as:

Zi, f =
1{Fi = f , Asi · (1 – Fi) = 0}
P(Fi = f , Asi · (1 – Fi) = 0)

Yi

The indicator in the numerator isolates individuals assigned to the experimental arm corre-
sponding to endogenous treatment assignments, f ∈ F, and who are exogenously assigned to
control whenever treatment is exogenously assigned. The denominator reweighs the outcome
by the known assignment probability. Then the Horvitz-Thompson estimator for each mean is
the sample average of these weighted outcomes: µ̂ f = N–1

∑
i Zi, f .

These estimatedmeans and IPWoutcomes are collected in vectors: µ̂ = (µ̂00 , µ̂10 , µ̂01 , µ̂11)T

and Zi = (Zi,00 , Zi,10 , Zi,01 , Zi,11)T . Then, the estimated means are used to form plug-in
estimates of the two candidate values for the bounds, (Ṽt(0), Ṽt(1)) = Λtµ̂, where Λt is the
transformation matrix:

Λt =

(
–1 1{t = 1} 1{t = 2} 0
0 1{t = 1} – 1 1{t = 2} – 1 1

)

Finally, the estimated attribution bounds are the minimum and maximum of these two values
(Λtµ̂):

V̂ t = min Λtµ̂ & V̂ t = max Λtµ̂
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Next, it is shown that this estimator is consistent, but because of the estimator’s
min /max operations, it converges to a non-normal distribution.

THEOREM 2. The estimators, V̂ t and V̂ t, are consistent. Furthermore, under standard regu-
larity conditions for the central limit theorem,

√
N(Λtµ̂ –Λtµ) converges to a multivariate

normal distribution,N
(
0,ΛtΣΛTt

)
, as N grows, whereΣ = Cov(Zi) andµ = E[Zi]. The bounds

themselves, V̂ t and V̂ t, converges either to the min/max of two normals,Λtµ̂, when the bounds
collapse (i.e., V t = V t), or to a normal centered around the corresponding bound when the
bounds do not collapse (i.e., V t < V t).

Due to the non-linearity of the min /max operators, the estimators, V̂ t and V̂ t, are
biased. By Jensen’s inequality, this bias is conservative, the estimated bounds are, on
average, wider than the true bounds: E[V̂ t] ≤ V t and V t ≤ E[V̂ t].

To construct confidence intervals, I propose a subsampling-based approach (Politis
and Romano 1994). While the bootstrap is a more common resampling method, it is
known to fail when the estimator is not locally differentiable, as is the case for V t and
V t when the true bounds collapse (V t = V t). In contrast, subsampling is theoretically
guaranteed to provide asymptotically valid confidence intervals even in such non-
standard settings. Algorithm 1 formalizes this robust inference procedure.

3.4. Identification by Sequential Unconfoundedness

When experimentation is infeasible, identification can be achieved by relying on a
sequential unconfoundedness assumption. This approach, common in observational
studies with time-varying treatments, requires that treatment assignment in each period
is as good as random, conditional on the observed history. This section shows how this
assumption identifies all six counterfactual means needed for the attribution bounds,
and provides a corresponding plug-in estimator and a bootstrap-based method for
constructing confidence intervals.

In a purely observational setting, all individuals follow their natural treatment path,
which corresponds to the case where everyone endogenously receives treatment, i.e.,
Fi = (1, 1) for all i. Given that there is no meaningful variation for the experimental in-
struments in an observational study, the potential treatment notation can be simplified,
letting Ai1 = Ai1(1) and Ai2(a1) = Ai2(a1, 1), such that the observed treatment path is
Ai = (Ai1,Ai2(Ai1)).

7Note: The subsample size bmust satisfy b→∞ and b/N → 0. A common practical choice is b = ⌊Nc⌋
for some c ∈ (0.5, 1), such as c = 4/5.
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Algorithm 1 Subsampling Confidence Intervals for Attribution Bounds

Input: Data D = {Yi, Fi,Asi }
N
i=1; subsample size b;

7 number of subsamples S; confidence
level α.

Output: (1 – α) confidence intervals for V t and V t.

1: Compute the full-sample estimates V̂ t and V̂ t from D using Estimator 1.
2: for s = 1 to S do
3: Draw a subsample D∗s of size b from D without replacement.
4: Compute the subsample estimates V̂∗t,s and V̂

∗
t,s from D∗s using Estimator 1.

5: Define the sth centered statistics:

qV ,s ←
√
b
(
V̂∗t,s – V̂ t

)
qV ,s ←

√
b
(
V̂
∗
t,s – V̂ t

)
6: end for

7: Let cV (β) be the β-quantile of the empirical distribution of {qV ,s}Ss=1.

8: CIV ←
[
V̂ t –

cV (1–α/2)√
N

, V̂ t –
cV (α/2)√

N

]
.

9: Let cV (β) be the β-quantile of the empirical distribution of {qV ,s}
S
s=1.

10: CIV ←
[
V̂ t –

cV (1–α/2)√
N

, V̂ t –
cV (α/2)√

N

]
.

11: return CIV ,CIV

To substitute for the lack of randomization, I rely on the following sequential un-
confoundedness assumption, also known as sequential ignorability (Imai et al. 2010b;
Hernán and Robins 2020). This assumption requires that treatment in each period is
independent of all potential future outcomes and behaviors conditional on the observed
history; the observed history includes past treatments and a vector of pre-treatment
covariates, Xi ∈ X ⊂ Rd.

ASSUMPTION 3 (Sequential Unconfoundedness). For all a1, ã1 ∈ A1, a2 ∈ A2, and x ∈ X,
we have:

1. (Y (a1, a2),A2(ã1)) ⊥ A1|X = x

2. Y (a1, a2) ⊥ A2(ã1)|A1 = ã1,X = x

The first condition states that the initial treatment, A1, is conditionally indepen-
dent of all potential outcomes and future potential treatments. This is the standard
unconfoundedness (or ‘as-if random’) assumption for a single treatment. The second
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condition is stronger; it assumes that the second-period treatment is also conditionally
independent of potential outcomes, even those under different treatment histories. This
includes a cross-worlds independence assumption, which, while strong, is standard for
achieving point identification in this context, and is precisely what we need to identify
the cross-world counterfactual means.8

In addition to sequential unconfoundedness, there needs to be a positive probabil-
ity that every individual receives every treatment combination. This is often called a
positivity or overlap assumption:

ASSUMPTION 4 (Positivity). For all (a1, a2) ∈ A and x ∈ X, we have:

P(A2 = a2|A1 = a1,X = x) > 0

P(A1 = a1|X = x) > 0

Under these assumptions, the attributionbounds are identifiedbecause all six, single-
world and cross-world, counterfactual means outlined in Lemma 2 are themselves
identified.

PROPOSITION 5. Under Assumptions 1, 3 and 4, all six counterfactuals means required for
the attribution bounds (Lemma 2) are identified and can be expressed in terms of observable
distributions:

E[Y (0, 0)] = E
[
E[Y |A = (0, 0),X]

]
E[Y (A1, 0)] =

∑
a1

E
[
E[Y |A = (a1, 0),X]P(A1 = a1|X)

]
E[Y (0,A2(0))] =

∑
a2

E
[
E[Y |A = (0, a2),X]P(A2 = a2|A1 = 0,X)

]
E[Y (0,A2(A1))] =

∑
a2

E
[
E[Y |A = (0, a2),X]P(A2 = a2|X)

]
E[Y (A1,A2(0))] =

∑
a1,a2

E
[
E[Y |A = (a1, a2),X]P(A1 = a1|X)P(A2 = a2|A1 = 0,X)

]
E[Y (A1,A2)] = E[Y ]

As a consequence, the attribution bounds, V t and V t, are also identified for each t.

8As with the experimental setting, if the average joint effects have the same sign (Assumption 2), it is
not necessary to identify the cross-world counterfactuals and thus the analysis does not need to rely on
cross-worlds independence.
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Algorithm 2 Cross-Fitted Plug-In Estimator for Attribution Bounds

Input: Data D = {Yi,Ai,Xi}Ni=1; number of folds K.
Output: Estimated attribution bounds V̂ t, V̂ t.

1: Randomly partition the set of indices {1, . . . ,N} into K disjoint folds, I1, . . . , IK.
2: for k = 1 to K do
3: Define the training data as D(–k) = D \ {Di}i∈Ik .
4: Using D(–k), estimate nuisance functions: µ̂(–k)(a1, a2, x), p̂(–k)(a2|a1, x), and

p̂(–k)(a1|x).
5: for each observation i ∈ Ik do
6: For all (a1, a2) ∈ A, store µ̂i(a1, a2)← µ̂(–k)(a1, a2,Xi).
7: For all (a1, a2) ∈ A, store p̂i(a2|a1)← p̂(–k)(a2|a1,Xi) and p̂i(a1)← p̂(–k)(a1|Xi).
8: end for
9: end for

10: Compute counterfactual means using predictions.
Ê[Y (0, 0)]← N–1

∑N
i=1 µ̂i(0, 0).

Ê[Y (A1, 0)]← N–1
∑N
i=1
∑
a1∈A1 µ̂i(a1, 0) p̂i(a1).

Ê[Y (0,A2(0))]← N–1
∑N
i=1
∑
a2∈A2 µ̂i(0, a2) p̂i(a2|0).

Ê[Y (0,A2(A1))]← N–1
∑N
i=1
∑
a2∈A2 µ̂i(0, a2)

(∑
a1∈A1 p̂i(a2|a1) p̂i(a1)

)
.

Ê[Y (A1,A2(0))]← N–1
∑N
i=1
∑
a1,a2 µ̂i(a1, a2) p̂i(a1) p̂i(a2|0).

Ê[Y (A1,A2)]← N–1
∑N
i=1 Yi.

11: Compute V̂t(λ) by plugging (Ê[Y (0, 0)], . . . , Ê[Y (A1,A2)])T into the formula from
Lemma 2.

12: V̂ t ← minλ∈{0,1}3 V̂t(λ).

13: V̂ t ← maxλ∈{0,1}3 V̂t(λ).

14: return V̂ t, V̂ t

The identification results in Proposition 5 provides a path for estimation via a plug-
in approach. This requires estimating two sets of nuisance functions: the conditional
outcome function, µ(a1, a2, x) ≡ E[Y |A = (a1, a2),X = x], and the sequential propensity
scores, p(a2|a1, x) ≡ E[A2|A1 = a1,X = x] and p(a1|x) ≡ E[A1|X = x]. Here, we employ a
K-fold cross-fitting procedure, which involves sample-splitting to estimate the nuisance
functions and use them to generate predictions on separate, independent samples. The
procedural nature of this approach is formalized in Algorithm 2.

The following theorem establishes the asymptotic properties of the cross-fitted
estimator. While the intermediate counterfactual means are asymptotically normal,
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the final bound estimators inherit a non-standard limiting distribution for analogous
reasons to their design-based counterparts (Theorem 2). In the design-based setting,
this irregularity occurred only when the two candidate values for the bounds were
equal. Here, the optimization problem is over the larger set {Vt(λ) : λ ∈ {0, 1}3}, and the
non-standard limiting distributions arises more generally whenever the minimizer and
maximizer of Vt(λ) are not unique.

THEOREM 3. Under Assumptions 1, 3 and 4 and standard regularity conditions for estimating
parametric models, the vector of six estimated counterfactual means is consistent and asymp-
totically normal. Consequently, the vector of possible attribution values, V̂t = (V̂t(λ))λ∈{0,1}3,
is also consistent and asymptotically normal. The estimator for the lower (upper) bound,
V̂ t, is asymptotically normal if the minimum (maximum) of Vt(λ) is unique.9 Otherwise,
its asymptotic distribution is that of the minimum (maximum) of multiple normal random
variables.

As in the design-based case, Theorem A2 reveals that the estimators for the attri-
bution bounds, V̂ t and V̂ t, have non-standard asymptotic distributions when the opti-
mization problem defining the true bounds (Lemma 2) has a non-unique solution. The
estimators are again subject to a conservative bias, and due to the non-differentiability
of the min /max operators, standard inferential procedures, such as the bootstrap, can
fail to provide correct coverage.

Fortunately, the robust subsampling strategy from Algorithm 1 remains asymptoti-
cally valid. To construct confidence intervals in the observational setting, one simply
applies the steps of Algorithm 1, with one key modification: we now compute the full-
sample and subsample estimates (Steps 1 and 5) using the estimation procedure outlined
in Algorithm 2. While this approach is computationally intensive, it correctly accounts
for the uncertainty arising from the estimation of the nuisance functions and is valid
even when the estimated bounds limiting distribution is non-standard.

4. Empirical Applications

To demonstrate the applicability of our proposed attribution bounds, this section esti-
mates them in twodistinct empirical applications. First, I examine a framing experiment

9Letting Vt,(1) ≤ Vt,(2) ≤ . . . ≤ Vt,(8) denote the order statistics for the vector of true values
{Vt(λ)}λ∈{0,1}3 , the condition for a unique minimum is Vt,(1) < Vt,(2), and for a unique maximum is
Vt,(8) > Vt,(7).
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that was particularly interested in understanding the role of mediators (Brader et al.
2008). Here, I find that the jointly-produced effects of both causes are substantial leading
the attribution bounds to be wide. Second, I re-analyze an experiment with a factorial
design (Gertler et al. 2014). Here, the estimated attribution bounds are tight, reflecting
the fact that the experimental design ensured some of the joint-effects are zero. This
example demonstrates that in some applications, there can be limited ambiguity in
attribution, and what is the case, our attribution bounds reflect that. In each application,
the estimated bounds are shown to transparently communicate the scope for strategic
selection of attribution rules, which proves minimal in the first case and substantial in
the second.

4.1. A Mediation Study

In this section, I consider a setting where the causal pathways are not known a priori
and are an important object of interest. I use data from a classic framing experiment
by Brader et al. (2008). In their study, participants were shown a news story about
immigration, either with a focus on latino or European immigrants; the authors classify
the two articles as treatment and control, respectively. I refer to this as the framing
treatment. The authors then measured a potential mediator: the individuals level of
anxiety. In the language of this paper, the framing treatment is the first cause, and
anxiety is the second cause. Finally, the authors measured negative sentiment towards
immigrants, the outcome of interest.

Here, sequential unconfoundedness is not guaranteed by design and must be as-
sumed. The framing treatment (A1) is randomly assigned, but anxiety (A2) is not. Here,
sequential unconfoundedness requires that, conditional on the framing treatment
and pre-treatment covariates, anxiety is as-good-as-randomly assigned with respect
to potential outcomes (negative sentiment towards immigrants). While this is a strong
assumption, it is standard in the mediation literature (Imai et al. 2010a). Under this
assumption, I estimate attribution bounds for the framing treatment and anxiety.10

To keep the estimation simple and in line with practice, I fit linear models of the
expected potential outcomes and potential treatments. However, I use K-fold cross-
fitting to ensure that each individual’s predicted counterfactuals are not based on their
own data.11 I use the sample of 265 individuals that have complete records.

10To fit in our framework, I discretize the authors’ continuous measure of anxiety into a binary
variable.

11In practice, I use 10 folds.
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TABLE 1. Attribution Bounds for the Framing Experiment Brader et al. (2008)

Lower Bound Upper Bound

Framing Treatment 0.037 0.156
[-0.017, 0.106] [0.051, 0.229]

Anxiety 0.295 0.413
[0.197, 0.394] [0.304, 0.505]

Combined Effect 0.451
[0.340, 0.545]

Estimate 95% Confidence Interval

E[D1(θ)] 0.087 [-0.006, 0.176]
E[D2(θ)] 0.345 [0.243, 0.437]
E[I(θ)] 0.068 [0.031, 0.100]
E[XD(θ)] -0.025 [-0.062, 0.018]
E[XI(θ)] -0.024 [-0.058, 0.015]

Notes: Results from a re-analysis of Brader et al. (2008). The first cause is the framing
treatment and the second is anxiety. The outcome is standardized negative sentiment
towards immigrants. Point estimates in the top table represent the lower and upper
attribution bounds for each cause, with 95% confidence intervals for those bounds
shown in brackets below. Confidence intervals are from 2000 subsamples of size
b = N4/5.

Table 1 presents the results. The analysis seeks to explain the causes’ combined
effect, captuing the impact of both the framing treatment and anxiety.12

The combined effect of the intervention is a 0.45 standard deviation increase in neg-
ative sentiment. More importantly for the purposes of this paper, the jointly-produced
effects are substantial, leading to wide attribution bounds (a range of approximately
0.12 standard deviations). The ambiguity arises from the moderately sized indirect and
indirect interaction effects.

The wide range reveals significant attributional ambiguity and highlights the value
of this paper’s approach. A researcher aiming to downplay the importance of racial
cues in the news could strategically select a causal decomposition that yields attribution

12Note: The combined effect is distinct from the total effect considered in the mediation literature:
E[Y (1,A2(1)) – Y (0,A2(0))] as the combined effect, E[Y (A1,A2(A1)) – Y (0, 0))], captures the effect of both
causes, including any baseline effect of anxiety.
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values near or at the lower bound for the framing treatment making it seem statistically
insignificant. Conversely, a researcher wishing to emphasize the importance of the
framing treatment could select a different causal decomposition yielding attribution
values near or at the upper bound, which is statistically significant. By reporting the
full bounds, the scope for this kind of strategic behavior is made transparent. Instead
of a single, carefully selected point-estimate, the bounds present the full range of
conclusions supported by the data across all valid attribution rules.

Moreover, the attribution bounds can still yield decisive conclusions. Notice that
the entire confidence interval for anxiety is above zero. This implies that regardless of
the chosen attribution rule, the credit assigned to anxiety is positive and statistically
significant. One can therefore conclude that anxiety is an important driver of sentiment
towards immigrants in this experiment, a conclusion that is robust to the ambiguity of
attribution.

4.2. An Experiment with a Factorial Design

The second application uses data from a study by Gertler et al. (2014), which follows up
on an experiment run in Jamaica a few decades earlier Grantham-McGregor et al. (1991).
The original experiment provided growth-stunted toddlers with either a nutritional
supplement, psychosocial stimulation, or both. Each treatment arm in the original
experiment had 32 participants, while the control arm had 33 participants. The authors
were able to re-interview 105 out of the 129 original participants and found limited
evidence for selective attrition.

To run the analysis, I leverage the experiment’s factorial design. While the two
treatments were assigned independently, I conduct an “as-if” sequential analysis. I
impose a hypothetical causal ordering, treating psychosocial stimulation as the first
cause (A1) and nutritional supplementation as the second (A2). Under this imposed
structure, the factorial design’s independence ensures two things. First, the effect of the
first cause on the secondmust be zero,meaning the true indirect and indirect interaction
effects are zero. The method should recover this. Second, because both treatments
were randomized, the identifying assumption, sequential unconfoundedness, holds by
design.

Table 2 presents the estimated attribution bounds. Here, the goal is to explain the
average combined effect of the realized treatment path, E[Y (A1,A2(A1)) – Y (0, 0)], which
in this context represents the effect on log earnings. The estimated combined effect is a
sizeable 0.119 increase, though it is not statistically significant at conventional levels;
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TABLE 2. Attribution Bounds for Gertler et al. (2014)

Lower Bound Upper Bound

Psychosocial Stimulation 0.172 0.178
(0.085) (0.063)

Nutritional Supplement -0.060 -0.053
(0.518) (0.548)

Combined Effect 0.119
(0.355)

Estimate P-Value

E[D1(θ)] 0.178 (0.107)
E[D2(θ)] -0.053 (0.623)
E[I(θ)] -0.003 (0.611)
E[XD(θ)] -0.003 (0.963)
E[XI(θ)] -0.000 (0.981)

Notes: Results from a re-analysis of Gertler et al. (2014). The first cause is psychosocial
stimulation, the second cause is nutritional supplementation, and the outcome is
log-earnings. P-values from permutation tests are reported in parentheses.

reported p-values are from a permutation test, in line with the original authors.
As the bottom panel of Table 2 shows, the estimated indirect and indirect interaction

effects (E[I(θ)] and E[XI(θ)]) are effectively zero, affirming our expectation from the
design. More interestingly, the direct interaction effect (E[XD(θ)]) is also negligible.
Because the ambiguity in attribution stems from these three jointly-produced effects,
their near-zero magnitude results in extremely tight attribution bounds. As a conse-
quence, the problem of strategically selecting a causal decomposition is moot here; the
attribution bounds indicate that any causal decomposition would yield nearly identical
conclusions. The tightness of the bounds is an important finding worth reporting in
and of itself as it provides quantitative evidence that this particular causal attribution is
robust and not subject to meaningful debate.
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5. Conclusion

This paper addresses a common question in applied research: “How much did each
cause contribute to their combined effect?” I argue that the prevailing practice of report-
ing a single numbermasks a fundamental conceptual ambiguity rather than resolving it.
The paper’s central insight is to move from debating which single decomposition is best
to formally characterizing the set of all causal decompositions. The analysis establishes,
in two complementary ways, that a decomposition is causal if and only if it attributes
to each cause its individually-produced effects while allowing any convex split of the
jointly-produced effects. This characterization reveals that ambiguity in attribution
is an inherent feature of multi-cause systems, stemming entirely from the different
ways one might attribute these joint effects. This characterization, in turn, provides a
common language for interpreting existing methods, showing that approaches, such
as various Shapley values and sequential decompositions, represent different implicit
choices for how to handle this ambiguity.

This insight leads directly to the paper’s main proposal: embrace ambiguity by
reporting attribution bounds. These bounds represent the minimum and maximum
contributions attributable to a cause across all causal decompositions. They transpar-
ently communicate the degree of ambiguity, collapsing to a point only when no joint
effects are present. To ensure this approach is practical, I develop identification and
estimation strategies for both experimental and observational settings. As the empirical
applications demonstrate, the bounds directly quantify the ambiguity: they are tight
when joint effects are minimal, but widen to reveal the ambiguity that a single point
estimate would otherwise hide.

Beyond offering a newmethod, this work also clarifies the proper role of attribution.
This reframes its primary application: not as a decision-making tool, but as a robust
method for clear communication. When a decision problem can be fully specified
and its solution implemented, it should be, as it leads to better decisions. The value
of attribution bounds, therefore, lies in distilling the complex causal structure of a
system into an honest and transparent summary, which is especially valuable when the
ultimate decision problem is vague, if not unknown, or when results must be conveyed
to diverse audiences.

By providing a formal language for the ambiguity in attributing the combined effect
of multiple causes, this work contributes to and clarifies debates across several litera-
tures. It reframes the search for a single multi-touch attribution model in marketing
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as a choice about how to handle joint effects; it offers a causal interpretation of the
path-dependency problem in economics; and it bridges the “Effects-of-Causes” and
“Causes-of-Effects” literature by focusing on the unique challenge of attributing an
average effect.

Ultimately, by replacing the pretense of a single answer with a transparent account
of the underlying ambiguity, this work provides a more honest and robust foundation
for reasoning about causal attribution.
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Appendix A. Proofs for Section 2

Here we provide the proofs for Section 2. In order, we prove:

(a) Lemma 1, which establishes the algebraic identity between the total effect and
the sum of its five constituent causal components.

(b) Proposition 1, which establishes that on the set of non-defiers, satisfying the first
three properties is equivalent to being a causal decomposition.

(c) Theorem 1, which establishes that satisfying the four properties is equivalent to
being a causal decomposition.

To aid our discussion, we find it useful to first introduce some notation. First, note that
for any binary variables x1, x2 ∈ {0, 1} we have:

y(x1, x2) = y(0, 0) + [ y(1, 0) – y(0, 0)]x1 + [ y(0, 1) – y(0, 0)]x2
+ [ y(1, 1) – y(0, 1) – y(1, 0) + y(0, 0)]x1x2

We define the coefficients here as β1,β2 and β12 respectively:

y(x1, x2) = y(0, 0) + β1x1 + β2x2 + β12x1x2

Using this notation, we can rewrite the five causal components compactly as follows:

D1(θ) =
[
y(1, 0) – y(0, 0)

]
a1 = a1β1

D2(θ) =
[
y(0, 1) – y(0, 0)

]
a2(0) = a2(0)β2

I(θ) =
[
y(0, 1) – y(0, 0)

]
(a2(1) – a2(0)) a1 = a1(a2(1) – a2(0))β2

XD(θ) =
[
y(1, 1) – y(0, 1) – ( y(1, 0) – y(0, 0))

]
a2(0) = a1a2(0)β12

XI(θ) =
[
y(1, 1) – y(0, 1) – ( y(1, 0) – y(0, 0))

]
(a2(1) – a2(0)) a1 = a1(a2(1) – a2(0))β12

We now proceed to demonstrate the desired results.

A.1. Proof of Lemma 1

LEMMA 1 (continuing from p. 13). For type, θ = (a1, a2(·), y(·)) ∈ Θ, the total effect, τ(θ),
can always be written as the sum of the following five component effects:

τ(θ) = D1(θ) + D2(θ) + I(θ) + XD(θ) + XI(θ)
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where each component is defined as:

D1(θ) =
[
y(1, 0) – y(0, 0)

]
a1

D2(θ) =
[
y(0, 1) – y(0, 0)

]
a2(0)

I(θ) =
[
y(0, 1) – y(0, 0)

]
(a2(1) – a2(0)) a1

XD(θ) =
[
y(1, 1) – y(0, 1) – ( y(1, 0) – y(0, 0))

]
a2(0)a1

XI(θ) =
[
y(1, 1) – y(0, 1) – ( y(1, 0) – y(0, 0))

]
(a2(1) – a2(0)) a1

PROOF. We prove the identity by direct algebraic manipulation. We begin by rewriting
τ(θ) = y(a1, a2(a1)) – y(0, 0) in terms of the β’s defined in the section’s preamble (Section
A):

τ(θ) = y(a1, a2(a1)) – y(0, 0)

= β1a1 + β2a2(a1) + β12a1a2(a1).

Moreover, we can always expand the potential treatments as follows, for any x1 ∈ {0, 1}:

a2(x̃1) = a2(0) + [a2(1) – a2(0)]x̃1

Applying this identity letting x1 = a1 gives us the following:

τ(θ) = β1a1 + β2a2(0) + β2(a2(1) – a2(0))a1 + β12a1a2(0) + β12(a2(1) – a2(0))a1
= D1(θ) + D2(θ) + I(θ) + XD(θ) + XI(θ)

where the last step follows by definition (see Section A preamble). This completes the
proof.

A.2. Proof of Proposition 1

PROPOSITION 1 (continuing from p. 17). For a decomposition, ψ ∈ Ψ, the following two
conditions are equivalent on the set of non-defiers, {(a1, a2(·), y(·)) : a2(1) ≥ a2(0)}:

(i) ψ satisfies Linearity, No Credit for No Effect, and No Blame for No Harm (Properties 1,
2, and 3)

(ii) ψ is a causal decomposition, ψ ∈ Ψc

PROOF. We prove both directions of the equivalence startingwith “Properties⇐Causal
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Decomposition” and then proceeding to “Properties⇒ Causal Decomposition”. Note
that all statements and types in this proof are restricted to the set of non-defiers θ ∈
ΘND = {(a1, a2(·), y(·)) : a2(1) ≥ a2(0)}.

Properties⇐ Causal Decomposition. Assume that for any θ ∈ ΘND, ψ(θ) = ψc(θ) for
some fixed causal decomposition ψc ∈ Ψc. We need to show that ψ satisfies the three
properties for any type in ΘND.

(a) Linearity: A causal decomposition ψc is defined as a linear combination of the
five components D1,D2, I,XD,XI. Each of these components is a linear function of
the potential outcome function y(·). For example, D1(θ; y + ỹ) = [( y(1, 0) + ỹ(1, 0)) –
( y(0, 0) + ỹ(0, 0))]a1 = D1(θ; y) + D1(θ; ỹ). Since ψc is a sum of such terms, it satisfies
additivity. Similarly, scaling y(·) by c scales each component by c, so ψc satisfies
homogeneity. Thus, ψc satisfies Linearity.

(b) No Credit for No Effect:

(i) For Cause 1: Recall ψc1 = D1 + λ1I + λ2XD + λ3XI. If a1 = 0, all four of these
components are zero, soψc1(θ) = 0. Ifm1(·; θ) = 0, then y(1, 0) = y(0, 0) and y(1, 1) =
y(0, 1). This implies D1(θ) = 0 and the interaction term [ y(1, 1) – y(0, 1) – ( y(1, 0) –
y(0, 0))] is also zero, which in turn means XD(θ) = 0 and XI(θ) = 0. The property
as stated also requiresm1→2(·; θ) = 0. This means y(b1, a2(1)) – y(b1, a2(0)) = 0.
If a2(1) ̸= a2(0), this requires y(b1, 1) = y(b1, 0) for b1 ∈ {0, 1}, which implies
m2(·; θ) = 0. If m2(0; θ) = 0, then y(0, 1) = y(0, 0), which implies I(θ) = 0. Thus,
ψc1(θ) = 0.

(ii) For Cause 2: Recallψc2 = D2 + (1–λ1)I + (1–λ2)XD + (1–λ3)XI. If a2(0) = a2(1) = 0,
then D2 = I = XD = XI = 0, so ψc2(θ) = 0. If m2(·; θ) = 0, then y(0, 1) = y(0, 0)
and y(1, 1) = y(1, 0). This implies D2(θ) = 0 and I(θ) = 0. The interaction term
becomes [ y(1, 0) – y(0, 0) – ( y(1, 0) – y(0, 0))] = 0, which means XD(θ) = 0 and
XI(θ) = 0. Thus, ψc2(θ) = 0.

(c) No Blame for No Harm: For non-defiers, a2(1) ≥ a2(0), so a2(1) – a2(0) ≥ 0. The
conditions for Cause 1 implym1(0) ≥ 0,m2(0) ≥ 0 (fromm1→2), and the interaction
term is non-negative. Each component D1, I,XD,XI is thus a product of non-negative
terms, making them non-negative. Since λi ∈ [0, 1], ψc1 is a sum of non-negative
terms and must be non-negative. A symmetric argument holds for ψc2.
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ψ(θ′) = ψc(θ′) = ψc(θ) +ψc(θ̃) = ψ(θ) +ψ(θ̃).

The same logic of inheritance applies directly to Homogeneity, No Credit for No Effect,
and No Blame for No Harm.

Properties⇒ Causal Decomposition. Assume ψ satisfies the three properties for all
θ ∈ ΘND. We show that ψmust take the form of a causal decomposition.

(a) Linearity. The Linearity property implies that for any given θ = (a1, a2(·), y(·)) ∈
ΘND, ψ1(θ) is a linear functional of the potential outcome function y(·). We can
therefore express it as a linear combination of a basis for the space of outcome func-
tions. A convenient basis is given by the constant outcome y(0, 0) and the principal
effect terms defined in the section preamble as β’s (see Section A):

ψ1(θ) = f 0(θA) y(0, 0) + f 1(θA)β1 + f 2(θA)β2 + f 12(θA)β12

where the coefficients f j depend only on the treatment path characteristics θA =
(a1, a2(0), a2(1)).

First, note that if all effect terms to zero (β1 = β2 = β12 = 0), then all marginal
effects are zero, so by No Credit for No Effect (Property 2), ψ1(θ) must be zero. The
formula gives ψ1(θ) = f 0(θA) y(0, 0). For this to be zero for any y(0, 0), we must have
f 0(θA) = 0. Our representation simplifies to:

ψ1(θ) = f 1(θA)β1 + f 2(θA)β2 + f 12(θA)β12

(b) Determine f 1(θA). Consider a type where only β1 ̸= 0. Then ψ1(θ) = f 1(θA)β1.
In this case, the second cause has no marginal effects (m2(·) = 0), so by Property
2(ii), ψ2(θ) = 0. The total effect is τ(θ) = y(a1, a2(a1)) – y(0, 0) = a1β1. The adding-up
constraint ψ1 + ψ2 = τ implies ψ1(θ) = a1β1. Therefore, f 1(θA)β1 = a1β1, which
means f 1(θA) = a1.

(c) Determine f 2(θA). Consider a type where only β2 ̸= 0. Then ψ1(θ) = f 2(θA)β2.
In this scenario, cause 1 has no direct marginal effect (m1(·) = 0). By Property 2(i),
if cause 1 is also inactive (a1 = 0) or has no indirect effect (m1→2(·) = 0), it gets no
credit.

• If a1 = 0, then ψ1(θ) = 0, so f 2(0, a2(0), a2(1)) = 0.
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• If a2(1) = a2(0) (i.e., always-taker or never-taker), then m1→2(·) = β2(a2(1) –
a2(0)) = 0. So ψ1(θ) = 0, which implies f 2(a1, x, x) = 0 for x ∈ {0, 1}.

The only function f 2 of three binary variables (a1, a2(0), a2(1)) that is zero when
a1 = 0 or when a2(0) = a2(1) must be proportional to a1(a2(1) – a2(0)). So we can write
f 2(θA) = λ1a1(a2(1) – a2(0)) for some constant λ1. Using No Blame for No Harm on a
complier type with β2 > 0 confirms λ1 ∈ [0, 1].

(d) Determine f 12(θA). Consider a type where only β12 ̸= 0. Then ψ1(θ) = f 12(θA)β12.

• If a1 = 0, Property 2(i) gives ψ1(θ) = 0, so f 12(0, a2(0), a2(1)) = 0. This implies
f 12 must be proportional to a1.

So, f 12(θA) must be of the form a1 · g(a2(0), a2(1)) for some function g defined on two
binary inputs. We don’t care about g(1, 0) because we’re not discussing defiers, and
we don’t care about g(0, 0), because there’s no credit to be distributed. The two cases
of interest are when g(0, 1) and g(1, 1). In both cases, so long as β12 > 0 No Blame for
No Harm ensures that the coefficients are non-negative, so we get:

f 12(θA) = a1 (λ2a2(0) + λ3(a2(1) – a2(0)))

for λ2, λ3 ≥ 0

(e) Putting it all together. Combining these findings, we have:

ψ1(θ) = a1β1 +
[
λ1a1(a2(1) – a2(0))

]
β2 +

[
a1 (λ2a2(0) + λ3(a2(1) – a2(0)))

]
β12

= a1β1 + λ1β2(a2(1) – a2(0))a1 + λ2β12a2(0)a1 + λ3β12(a2(1) – a2(0))a1

Recalling the definitions of the five components in terms of the βs from the section’s
preamble (see Section A), we can rewrite our expression for ψ1(θ) by substituting
these back in:

ψ1(θ) = D1(θ) + λ1I(θ) + λ2XD(θ) + λ3XI(θ).

This is precisely the formula for a causal decomposition, with sharing parameters
(λ1, λ2, λ3) ∈ [0, 1]3. By the adding-up constraint, ψ2(θ) = τ(θ) –ψ1(θ). Substituting
the full expression for τ(θ) from Lemma 1 and the derived expression for ψ1(θ), one
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can write ψ2(θ) in the desired form:

ψ2(θ) =
(
D1(θ) + D2(θ) + I(θ) + XD(θ) + XI(θ)

)
–
(
D1(θ) + λ1I(θ) + λ2XD(θ) + λ3XI(θ)

)
= D2(θ) + (1 – λ1)I(θ) + (1 – λ2)XD(θ) + (1 – λ3)XI(θ).

This completes the proof.

A.3. Proof of Theorem 1

THEOREM 1 (continuing from p. 18). A decomposition,ψ ∈ Ψ, satisfies Linearity, No Credit
for No Effect, No Blame for No Harm, and Symmetry of Causal Changes if and only if it is a
causal decomposition, ψ ∈ Ψc.

PROOF. We prove both directions of the equivalence startingwith “Properties⇐Causal
Decomposition” and then proceeding to “Properties⇒ Causal Decomposition”.

Properties⇐ Causal Decomposition. Consider a causal decompositionψc ∈ Ψwith fixed
sharing parameters λ ∈ [0, 1]3. We have already shown in the proof of Proposition 1 that
any causal decomposition satisfies Linearity, No Credit for No Effect, and No Blame for
No Harm for all non-defier types θ ∈ ΘND. The same arguments for Linearity and No
Credit for No Effect apply for the defiers as well. However, we do need to prove that No
Blame for No Harm applies to defiers, and of course we need to prove that Symmetry of
Causal Changes is satisfied.

(a) We now show a causal decomposition satisfies No Blame for No Harm on the
defiers, i.e., a2(1) < a2(0). We need to check two conditions

• If β1 ≥ 0, β2 ≤ 0 and β12 = 0, we need ψc1 ≥ 0. This is satisfied, because the
first cause gets credit for D1(θ) + λ1I(θ) = β1a1 + λ1β2(a2(a1) – a2(0)) ≥ 0, where
the second term is non-negative because β2 ≤ 0 and a2(1) < a2(0).

• If β2 = β12 = 0, then ψc2 ≥ 0. This is satisfied because the second cause gets no
credit, ψc2(θ) = 0.

(b) We now show it also satisfies Symmetry of Causal Changes. We must verify:

ψc(a1, aC2 , y) –ψ
c(a1, aNT2 , y) = ψc(a1, aAT2 , y) –ψc(a1, aD2 , y).
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Let’s analyze the first component, ψc1. The proof for ψ
c
2 follows from the adding-up

constraint. Noting that the form ofψc1 is D1 +λ1I +λ2XD +λ3XI, we rewrite each term:

• Complier (θC): aC2 (0) = 0, a
C
2 (1) = 1. ψ

c
1(θ

C) = D1a1 + λ1β2a1 + λ3β12a1.

• Never-Taker (θNT): aNT2 (0) = 0, aNT2 (1) = 0. All jointly-produced effects are zero.
ψc1(θ

NT) = D1a1.

• Always-Taker (θAT): aAT2 (0) = 1, aAT2 (1) = 1. ψc1(θ
AT) = D1a1 + λ2β12a2(0)a1.

• Defier (θD): aD2 (0) = 1, a
D
2 (1) = 0. ψ

c
1(θ

D) = D1a1 – λ1β2a1 + λ2a2(0)a1 – λ3a1.

where we plug in known forms for the five causal components. Combining terms,
we see that the compliers minus the never-takers give us λ1β2a1 + λ3β12a1, while the
always-takers minus the defiers give us λ1β2a1 + λ3a1. Thus, the equality is satisfied
and Symmetry of Causal Changes is satisfied.

Properties⇒ Causal Decomposition. Consider a decomposition ψ ∈ Ψ that satisfies the
four properties.

(a) Behavior on Non-Defiers: Proposition 1 states that because ψ satisfies the first three
properties, its behavior on the set of non-defiers ΘND = {θ : a2(1) ≥ a2(0)} must be
that of a causal decomposition. This means there exists a unique vector of sharing
parameters λ = (λ1, λ2, λ3) ∈ [0, 1]3 such that:

ψ(θ) = ψc(θ; λ) for all θ ∈ ΘND.

(b) Bridge to Defiers using Symmetry of Causal Changes: We now show thatψmust also
conform to ψc(·; λ) for defier types. A generic defier type is θD = (a1, aD2 , y), where
aD2 (0) = 1, a

D
2 (1) = 0. The fourth property provides an equation that connects defiers

to non-defiers. We rearrange it to solve for the decomposition of a defier type,ψ(θD):

ψ(θD) = ψc(θAT ; λ) –
[
ψc(θC; λ) –ψc(θNT ; λ)

]
where we leverage the fact that an always-taker (θAT), complier (θC), and never-taker
(θNT), are all non-defiers and thus can be written in terms of a causal decomposition;
note, here that each type only differs in the potential treatments, they each have the
arbitrary first treatment, a1, and potential outcomes, y(·). The final step is to plug-in
the known form for a causal decomposition and derive ψ’s behavior on the defiers,
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starting with ψ1:

ψ1(θD) = D1(θAT) + λ2XD(θAT) –
[
D1(θC) + λ1I(θC) + λ3XI(θC) – D1(θNT)

]
= β1a1 + λ2β12a1 –

[
β1a1 + λ1β2a1 + λ3β12a1 – β1a1

]
= β1a1 – λ1β2a1 + λ2β12a1 – λ3β12a1
= D1(θD) + λ1I(θD) + λ2XD(θD) + λ3XI(θD)

By the adding-up constraint, ψ2(θ) = τ(θ) –ψ1(θ). Substituting the full expression
for τ(θ) from Lemma 1 and the derived expression for ψ1(θ), one can write ψ2(θ) in
the desired form:

ψ2(θ) =
(
D1(θ) + D2(θ) + I(θ) + XD(θ) + XI(θ)

)
–
(
D1(θ) + λ1I(θ) + λ2XD(θ) + λ3XI(θ)

)
= D2(θ) + (1 – λ1)I(θ) + (1 – λ2)XD(θ) + (1 – λ3)XI(θ).

This shows that the behavior of ψ on defier types is uniquely determined by its
behavior on non-defier types, and itmust conform to the same causal decomposition
rule ψc(·; λ).

Since ψ(θ) = ψc(θ; λ) holds for both non-defiers (by Proposition 1) and defiers (by the
Symmetry property), it holds for all types θ ∈ Θ. Therefore,ψ is a causal decomposition.
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Appendix B. Proofs for Section 3

B.1. Proof for Lemma 2

LEMMA 2 (continuing from p. 21). For t ∈ {1, 2}, the attribution bounds, [V t , V t ], are
the minimum and maximum values of the following function evaluated over the set λ =
(λ1, λ2, λ3) ∈ [0, 1]3:

Vt(λ) = E[Y (0, 0)]× (λ2 – 1) (i)

+ E[Y (A1(1), 0)]× (1{t = 1} – λ2) (ii)

+ E[Y (0,A2(0, 1))]× (1{t = 2} – λ1 – λ2 + λ3) (iii)

+ E[Y (0,A2(A1(1), 1))]× (λ1 – λ3) (iv)

+ E[Y (A1(1),A2(0, 1))]× (λ2 – λ3) (v)

+ E[Y (A1(1),A2(A1(1), 1))]× λ3 (vi)

PROOF. By definition, the bounds are the extrema of Vt(λ) = E[ψt(θ; λ)] over λ ∈ [0, 1]3.
We first derive the expression for V1(λ).

From Definition 4, V1(λ) = E[D1(θ) + λ1I(θ) + λ2XD(θ) + λ3XI(θ)]. We can express the
expectation of each component in terms of expectations of potential outcomes, where
some outcomes are indexed by potential treatments:

E[D1(θ)] = E[(Y (1, 0) – Y (0, 0))A1(1)] = E[Y (A1(1), 0) – Y (0, 0)]

E[D2(θ)] = E[(Y (0, 1) – Y (0, 0))A2(0, 1)] = E[Y (0,A2(0, 1)) – Y (0, 0)]

E[I(θ)] = E[(Y (0, 1) – Y (0, 0))(A2(1, 1) – A2(0, 1))A1(1)]

= E[Y (0,A2(A1(1), 1)) – Y (0,A2(0, 1))]

E[XD(θ)] = E[(Y (1, 1) – Y (0, 1) – Y (1, 0) + Y (0, 0))A1(1)A2(0, 1)]

= E[Y (A1(1),A2(0, 1))] – E[Y (0,A2(0, 1))] – E[Y (A1(1), 0)] + E[Y (0, 0)]

E[XI(θ)] = E[(Y (1, 1) – Y (0, 1) – Y (1, 0) + Y (0, 0))A1(1)(A2(1, 1) – A2(0, 1))]

= E[Y (A1(1),A2(A1(1), 1))] – E[Y (0,A2(A1(1), 1))] – E[Y (A1(1),A2(0, 1))]

+ E[Y (0,A2(0, 1))]
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Substituting these expressions back into the formula for V1(λ):

V1(λ) =
(
E[Y (A1(1), 0)] – E[Y (0, 0)]

)
+ λ1

(
E[Y (0,A2(A1(1), 1))] – E[Y (0,A2(0, 1))]

)
+ λ2

(
E[Y (A1(1),A2(0, 1))] – E[Y (0,A2(0, 1))] – E[Y (A1(1), 0)] + E[Y (0, 0)]

)
+ λ3

(
E[Y (A1(1),A2(A1(1), 1))] – E[Y (0,A2(A1(1), 1))] – E[Y (A1(1),A2(0, 1))]

+ E[Y (0,A2(0, 1))]
)

We now collect terms based on the six counterfactual expectations:

V1(λ) = E[Y (0, 0)](–1 + λ2)

+ E[Y (A1(1), 0)](1 – λ2)

+ E[Y (0,A2(0, 1))](–λ1 – λ2 + λ3)

+ E[Y (0,A2(A1(1), 1))](λ1 – λ3)

+ E[Y (A1(1),A2(0, 1))](λ2 – λ3)

+ E[Y (A1(1),A2(A1(1), 1))](λ3)

This provides the expression for V1(λ). To find the expression for V2(λ), note that V2(λ) =
E[D2] + (1 – λ1)E[I] + (1 – λ2)E[XD] + (1 – λ3)E[XI]. This shows that V2(λ) has the same
functional form as V1(λ), but with different constant terms corresponding to the direct
effects. To find an expression for V2(λ) then, we simply need to add E[D2(θ) – D1(θ)] to
our expression for V1(λ). This gives us a general expression for Vt(λ) using an indicator
function 1{t = 1}:

Vt(λ) = (λ2 – 1)E[Y (0, 0)]

+ (1{t = 1} – λ2)E[Y (A1(1), 0)]

+ (1{t = 2} + λ3 – λ1 – λ2)E[Y (0,A2(0, 1))]

+ (λ1 – λ3)E[Y (0,A2(A1(1), 1))]

+ (λ2 – λ3)E[Y (A1(1),A2(0, 1))]

+ λ3E[Y (A1(1),A2(A1(1), 1))]

The attribution bounds [V t,V t] are the minimum and maximum of this linear function
over the cube λ ∈ [0, 1]3. This completes the proof.
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B.2. Proof for Proposition 2

PROPOSITION 2 (continuing from p. 23). Suppose Assumption 1 holds. There is no experi-
mental design P ∈ E that point-identifies the attribution bounds.

PROOF. This proof exploits the cross-world nature of terms (iv) and (v) in Lemma 2
to show that, for any fixed design P ∈ E, there exist two causal models that induce
the same distribution of observables under that design, but yield different attribution
bounds.

By definition of E, we have
(
F,As

)
⊥
(
{Y (x)}x , A1(1) , {A2(x1, 1))}x1

)
and P(F =

(1, 1)) < 1. We construct two data-generating processes, Q and Q̃, both satisfying Assump-
tion 1 and the design P, such that the joint law of observables (Y ,A,F,As) is the same
under Q and Q̃, but the attribution bounds differ.

Let θb1b2 describe an individual with A1(1) = 1, A2(0, 1) = 0, A2(1, 1) = b2, and define
their potential outcomes as follows:

Y (0, 0) = Y (1, 0) = Y (1, 1) = 0

Y (0, 1) = b1

This describe four types of individuals depending on the values of b1, b2 ∈ {0, 1}. Each
individual only varies in A2(1, 1) and Y (0, 1), otherwise they are all identical.

Now consider two data generating processes, B and C, denoted by PB and PC, re-
spectively:

PB(θb1b2) = 1/4

PC(θb1b2) =

1/4 + γ if b1 = b2
1/4 – γ else

for some fixed γ ∈ (0, 1/4). Now, note that these two data-generating processes are
observationally equivalent. To show observational equivalence it suffices to show they
follow the same distribution within each experimental arm because:

PB(Y ,A1,A2, F,As) = PC(Y ,A1,A2, F,As)

⇐⇒ PB(Y ,A1,A2|F,As)P(F,As) = PC(Y ,A1,A2|F,As)P(F,As)

and as this needs to hold for any experiment, P ∈ E, we need PB(Y ,A1,A2|F,As) =
PC(Y ,A1,A2|F,As).
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So, consider arbitrary As = as ∈ A, and let’s consider each F = f ∈ F in turn:

• If F = (0, 0), we observe A1 = as1, A2 = as2, and Y = Y (as1, a
s
2). The only potential

source of variation across DGPs is the outcome when as = (0, 1), but in both cases,
the probability of Y = 1 and Y = 0 is the same: 1/2.

PB(Y = 1) = PB(θ10 + θ11) =
1
4
+
1
4

=
1
2

PC(Y = 1) = PC(θ10 + θ11) =
(
1
4
– γ
)
+
(
1
4
+ γ
)

=
1
2

• If F = (1, 0), we observe A1 = A1(1) = 1, A2 = as2, and Y = Y (1, a
s
2) = 0. Here, there is no

variation, so they are observationally the same.

• If F = (0, 1), we observe A1 = as1, A2 = A2(a
s
1, 1), and Y = Y (a

s
1,A2(a

s
1, 1)). There are two

cases to consider here.

– First, if as1 = 0, then A2 = 0 and Y = Y (0, 0) = 0, so again, there is no variation,
they are observationally the same.

– Second, if as1 = 1, then A2 = A2(1, 1) and Y = Y (1,A2(1, 1)) = 0. Here, the only
potential source of variation is the second treatment, but in both cases, the
probability of A2 = 1 and A2 = 0 is the same: 1/2:

PB(A2 = 1) = PB(θ01 + θ11) =
1
4
+
1
4

=
1
2

PC(A2 = 1) = PC(θ01 + θ11) =
(
1
4
– γ
)
+
(
1
4
+ γ
)

=
1
2

• If F = (1, 1), we observe A1 = A1(1) = 1, A2 = A2(1, 1), and Y = Y (1,A2(1, 1)) = 0. Here,
the only potential source of variation is the second treatment, but as in the last case,
the probability of A2 = 1 and A2 = 0 is the same in both DGPs: 1/2:

Thus, the two distributions are observationally equivalent, and thus which DGP we are
in is not identified.

What remains to be shown is that the attribution bounds differ across these two
DGPs. Recall, the representation of the bounds derived in Lemma 2 and note that the
only term that’s potentially non-zero here, is the fourth one, i.e.:

Vt(λ) = (λ1 – λ3)E[Y (0,A2(A1(1), 1))]
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Now, note that this expectation differs across the two DGPs:

EB[Y (0,A2(A1(1), 1))] = EB[Y (0, 1)A2(1, 1)] = PB(θ11) =
1
4

EC[Y (0,A2(A1(1), 1))] = EC[Y (0, 1)A2(1, 1)] = PC(θ11) =
1
4
+ γ

Plugging these expectation into our representation ofVt(λ) andmaximizing/minimizing,
gives us two different sets of bounds. Under PB, the attribution bounds are [–1/4 , 1/4],
while under PC, they are [–1/4 – γ , 1/4 + γ]. As γ ̸= 0, the attribution bounds in both
DGPs are not the same.

As there are two distributions that are observationally equivalent yet yield distinct
attribution bounds, we conclude that the attribution bounds are not identified.

B.3. Proof for Proposition 3

PROPOSITION 3 (continuing from p. 24). Under Assumptions 1 and 2, an experimental
design, P ∈ E, point identifies the attribution bounds if and only if it is a partial eligibility
design, P ∈ EPE.

PROOF. The proof proceeds in three main steps. First, we show that Assumption 2 sim-
plifies the identification problem. Second, we prove sufficiency: that a partial eligibility
design ensures the attribution bounds are identified (“⇒”). Third, we prove necessity:
that the attribution bounds are identified only if the experimental design is a partial
eligibility design.

Step 1. Recall that for the first cause, each causal decomposition takes the following
form per Definition 4:

ψ1(θ) = D1(θ) + λ1I(θ) + λ2XD(θ) + λ3XI(θ)

Note that, given this form if E[I(θ)],E[XD(θ)] and E[XI(θ)] all have the same sign, the
credit assigned to cause one is either maximized or minimized by setting λ j = 1 or
λ j = 0 for j = 1, 2, 3.

Taking this observation to our representation of the bounds from Lemma 2, we note
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that the bounds are now extrema of the following function Ṽt(λ1) for λ1 ∈ {0, 1}:

Ṽt(λ1) = (λ1 – 1)E[Y (0, 0)]

+ (1{t = 1} – λ1)E[Y (A1(1), 0)]

+ (1{t = 2} – λ1)E[Y (0,A2(0, 1))]

+ λ1E[Y (A1(1),A2(A1(1), 1))]

Now, the problem of point-identifying the bounds boils down to point-identifying
these four terms.

Step 2. Sufficiency (If P ∈ EPE, then the attribution bounds are identified)
Consider a fixed experimental design P ∈ EPE. We note that each of these four

averages is identified, by an experimental arm that occurs with positive probability.

• E[Y (0, 0)] is identified by the experimental arm F = (0, 0), As = (0, 0). This arm occurs
with positive probability:

P(F = (0, 0),As = (0, 0)) = P(As = (0, 0)|F = (0, 0))P(F = (0, 0)) > 0

By, Assumption 1, we know the average outcome in this arm identifies E[Y (0, 0)]:

E[Y |F = (0, 0),As = (0, 0)] = E[Y (0, 0)|F = (0, 0),As = (0, 0)] = E[Y (0, 0)]

where the second equality comes from our definition of an experimental design
(Definition 1), which assumes that the experimental instruments are assigned inde-
pendently of each individual’s latent potential outcomes or potential treatments. In
this way, E[Y (0, 0)] is identified.

• E[Y (A1(1), 0)] is identified by two experimental arms: F = (1, 0) and As = (a1, 0) for
a1 ∈ {0, 1}. The probability that one of these arms occurs is positive:

P(F = (1, 0),As2 = 0) = P(A
s
2 = 0|F = (1, 0))P(F = (1, 0)) > 0

And the average outcome in these arms corresponds to the desired average potential
outcome (GivenAssumption 1 and the randomization guaranteed by the experiment):

E[Y |F = (1, 0),As2] = E[Y (A1(1), 0)|F = (1, 0),As2] = E[Y (A1(1), 0)]
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Thus, E[Y (A1(1), 0)] is also identified.

• E[Y (0,A2(0))] is identified by two experimental arms: F = (0, 1) and As = (0, a2) for
a2 ∈ {0, 1}. The probability that one of these arms occurs is positive:

P(F = (0, 1),As1 = 0) = P(A
s
1 = 0|F = (0, 1))P(F = (0, 1)) > 0

And the average outcome in these arms corresponds to the desired average potential
outcome (GivenAssumption 1 and the randomization guaranteed by the experiment):

E[Y |F = (0, 1),As1] = E[Y (0,A2(0, 1))|F = (0, 1),As1] = E[Y (0,A2(0, 1))]

Thus, E[Y (0,A2(0, 1))] is also identified.

• E[Y (A1(1),A2(A1(1), 1))] is identified by four experimental arms: F = (1, 1) and As =
(a1, a2) for a1, a2 ∈ {0, 1}. The probability that one of these arms occurs is positive:
P(F = (1, 1)) > 0. Moreover, the average outcome in these arms corresponds to the
desired average potential outcome (Given Assumption 1 and the randomization
guaranteed by the experiment):

E[Y |F = (1, 1)] = E[Y (A1(1),A2(A1(1), 1))|F = (1, 1)] = E[Y (A1(1),A2(A1(1), 1))]

Thus, E[Y (A1(1),A2(A1(1), 1))] is also identified.

Thus, Ṽt(λ1) is identified and in turn its extrema, the attribution bounds are identified.

Step 3. Necessity (If the attribution bounds are identified, then P ∈ EPE)
Suppose the attribution bounds are identified. We show by contradiction that this

requires the design P to be a partial eligibility experiment, i.e., that it must satisfy three
conditions: P(F = f ) > 0 for all f ∈ F, P(As = (0, 0)|F = (0, 0)) > 0, and P(Ast = 0|Ft =
0, F–t = 1) > 0 for t = 1, 2. We consider these three conditions in turn.

Step 3.i. Suppose there is an f ∈ F such that P(F = f ) = 0.

(a) Suppose P(F = (1, 1)) = 0. Note, that we never observe the joint distribution of(
A1(1), A2(A1(1), 1), Y (A1(1),A2(A1(1), 1))

)
, and we cannot identify it. To see this, note

that we never observe the distribution of
(
A1(1),A2(A1(1), 1)

)
, at best, we observe

the marginals of A1(1), A2(0, 1) and A2(1, 1), but there are many joint distribution
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that respect these marginals. So, for instance, if A2(0, 1) = 0 deterministically, but
you consider the following two DGPs, you cannot distinguish them, yet they will in
general lead to different bounds:

PB(A1(1) = b1,A2(1, 1) = b2) = 1/4

PC(A1(1) = b1,A2(1, 1) = b2) =

1/4 + γ if b1 = b2
1/4 – γ else

Assume, γ ∈ (0, 1/4). In both cases, each random variable has amarginal distribution
that sets it equal to 0 or 1 with probability 1/2. However, if Y (x1, x2) = x1x2, then
the bounds in each world boil down to the extrema of λ1E[Y (A1(1),A2(A1(1), 1))] =
λ1E[A1(1)A2(1, 1)]], which is other λ1/4 under PB or λ1/4 + γ under PC, and thus the
bounds are not identified showing the desired contradiction.

(b) Suppose P(F = (1, 0)) = 0. Note that we never observe the joint distribution of
A1(1) and Y (1, 0), so once again we can construct the same type of counterexample,
but now varying the joint distribution over these two variables while holding their
marginals fixed. Here, setting the second potential treatments to 1 and only having
all the irrelevant potential outcomes set to zero, ensures the bounds just depend
on E[Y (A1(1), 0)] = E[Y (1, 0)A1(1)], which under an analogous counterexample to
the last one (3.i.a) takes on different values under two observationally equivalent
distributions, and is thus not identified. As a consequence, neither are the bounds,
proving our desired result.

(c) Suppose P(F = (0, 1)) = 0. Note that we never observe the joint distribution of
A2(0, 1) and Y (0, 1), so once again we can construct the same type of counterexample,
but now varying the joint distribution over these two variables while holding their
marginals fixed. Here, settingA1(1) = 1 andA2(1, 1) = 1, while having all the irrelevant
potential outcomes set to zero, ensures the bounds just depend on E[Y (0,A2(0, 1))] =
E[Y (0, 1)A2(0, 1)], which under an analogous counterexample to first case (3.i.a) takes
on different values under two observationally equivalent distributions, and is thus
not identified. As a consequence, neither are the bounds, proving our desired result.

(d) Suppose P(F = (0, 0)) = 0. Note that if A1(1) = 1 and A2(·, 1) = 1, then with probability
one every individual receives at least one treatment, so we never observe the dis-
tribution Y (0, 0). In particular, fixing the potential outcomes other than Y (0, 0) to 0
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ensures that the bounds only depend on E[Y (0, 0)], but this can take on any value
while being observationally indistinguishable, and so the bounds are unidentified.

Thus, we must have P(F = f ) > 0 for all f ∈ F.

Step 3.ii. Suppose that P(As = (0, 0)|F = (0, 0)) = 0. Note that if A1(1) = 1 and A2(·, 1) =
1, then with probability one every individual receives at least one treatment, so we
never observe the distribution of Y (0, 0). As in the last subcase, we can fix the potential
outcomes other than Y (0, 0) to 0, ensuring that the bounds only depend on E[Y (0, 0)],
but this can take on any value while being observationally indistinguishable, and so the
bounds are not point-identified. This delivers the desired contradiction.

Step 3.iii. Suppose there is a t ∈ {1, 2} such that P(Ast = 0|Ft = 0, F–t = 1) = 0.

(a) Suppose, P(As1 = 0|F = (0, 1)) = 0. Note that if A1(1) = 1, then we never observe the
distribution of Y (0,A2(0, 1)), andmore to the point, we never observe the distribution
of A2(0, 1). To construct two observationally equivalent distributions, suppose the
potential outcomes are all 0, unless one receives only the second treatment, in which
case it could be 0 or 1, and set A2(1, 1) = 1. Here, each term in Ṽt(λ1) is 0, except for
E[Y (0,A2(0, 1))] = E[Y (0, 1)A2(0, 1)]. Even if Y (0, 1) = 1 deterministically, we cannot
identify the average A2(0, 1), so this could be anything in [0, 1], and thus the bounds
are not point-identified. This delivers the desired contradiction.

(b) Suppose, P(As2 = 0|F = (1, 0)) = 0. Note that if A2(·, 1) = 1, then we never observe the
distribution of Y (A1(1), 0). Suppose that the potential outcomes are always 0, unless
only the first treatment is received, and we construct two observationally equivalent
distributions, by creating two joint distributions over the first potential treatment,
A1(1) and the relevant potential outcome, Y (1, 0), that have the same marginals. In
particular, copying the construction from (3.i.a) as applied to (3.i.b) gives us the
desired contradiction: we can construct two observationally equivalent distributions
that lead to different bounds, and thus, they are not identified.

B.4. Proof for Proposition 4

PROPOSITION 4 (continuing from p. 25). Let P ∈ EPE be any partial-eligibility design.
There exists an eligibility design P′ ∈ EE that is weakly more efficient for estimating the four
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single-world counterfactuals. Formally, assuming finite variance for all potential outcomes,
the asymptotic variance of any regular and asymptotically linear (RAL) estimator for the
means is weakly lower under P′ than under P. Moreover, if the true bounds are non-trivial
(V t < V t), this efficiency gain extends to the estimation of the attribution bounds.

Proof of Proposition 4. The proof proceeds by establishing that the simple sample mean
estimator for each single-world counterfactual mean is semiparametrically efficient in
this experimental context. The result then follows by comparing the variance of these
efficient estimators under the different designs.

Step 1:. Let θk for k ∈ {1, 2, 3, 4}, denote the expected potential outcome for each of the
four single-world counterfactuals. Let Zik be a binary indicator that is 1 if individual i is
assigned to the k-th identifying experimental cell, and 0 otherwise. For example, for
θ1 = E[Y (0, 0)], the cell is (F = (0, 0),As = (0, 0)). The observed outcome for individuals
with Zi1 = 1 is Yi = Yi(0, 0). The probability of assignment to this cell, πk = P(Zik = 1) = pk,
is known by the design P. By design, the estimand θk is the expected outcome under
assignment to cell k.

Step 2:. It is a standard result in semiparametric statistics that under standard regu-
larity conditions, the Augmented Inverse Propensity Weighting (AIPW) estimator is
semiparametrically efficient for the average potential outcome. In a setting with no
covariates, the AIPW estimator for θk is given by:

θ̂AIPWk =
1
N

N∑
i=1

(
Zik
pk
(Yi – E[Y |Zik = 1]) + E[Y |Zik = 1]

)

In practice, the conditional expectation E[Y |Zik = 1] is replaced by a consistent estimator.
In this covariate-free setting, the natural and efficient estimator for E[Y |Zik = 1] is the
sample mean of Y within cell k, which we denote θ̂k = (

∑
i ZikYi)/(

∑
i Zik). Substituting

this into the AIPW formula:

θ̂AIPWk =
1
N

N∑
i=1

(
Zik
pk
(Yi – θ̂k) + θ̂k

)

=
1

N pk

N∑
i=1

ZikYi –
θ̂k
N pk

N∑
i=1

Zik +
1
N

N∑
i=1
θ̂k

58



=
Nk
N pk

θ̂k –
Nk
N pk

θ̂k + θ̂k = θ̂k

where Nk =
∑
i Zik. This shows that the AIPW estimator is algebraically identical to

the simple sample mean within the cell. Since the AIPW estimator is known to be
semiparametrically efficient, it follows that the simple sample mean, θ̂k, is an efficient
estimator for θk in this experimental context.

Step 3: . The asymptotic variance of an efficient estimator is given by the semipara-
metric efficiency bound. For estimating a mean from a subpopulation sampled with
probability pk, this bound is σ2k/ pk, where σ

2
k = Var(Yi|Zik). The estimators for each

θk are based on disjoint samples and are thus independent. The asymptotic variance
matrix for the vector of efficient estimators θ̂ = (θ̂1, . . . , θ̂4)T under design P is therefore:

ΣP =
1
N
diag

(
σ21
p1
,
σ22
p2
,
σ23
p3
,
σ24
p4

)

Let P′ be the corresponding eligibility design constructed from P. The variance matrix
under design P′ is:

ΣP′ =
1
N
diag

(
σ21
p′1
,
σ22
p′2
,
σ23
p′3
,
σ24
p′4

)
As established previously, P′ reallocates probability from non-informative exogenous
arms, ensuring p′k ≥ pk for k = 1, 2, 3, 4. Thus, every diagonal element of ΣP is weakly
greater than the corresponding element of ΣP′. This means the variance of the efficient
estimator for each θk is weakly lower under the eligibility design P′.

Step 4: Extension to Attribution Bounds.. The extension to the attribution bounds (V t,V t)
follows from the Delta Method. When the true bounds are non-trivial (V t < V t), the
bounds are smooth (continuously differentiable) functions of the vector of means θ.
The asymptotic variance of an efficient estimator for a smooth function of parameters
is a quadratic form involving the variance matrix of the efficient estimators for those
parameters. Since the variance matrix ΣP′ is smaller than ΣP (i.e., ΣP – ΣP′ is positive
semidefinite), the resulting asymptotic variance for the efficient estimator of the bounds
will also be weakly smaller under design P′. This completes the proof.

REMARK A1. Two clarifications are in order. First, the optimality statement rules out im-
provement by regular estimators that use only cell membership and outcomes; it does not
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rule out variance reduction achievable by using pre-treatment covariates. Second, irregu-
lar/superefficient estimators can outperform at a subset of parameter space but are not uni-
formly better, and are excluded by the regularity assumption above.

B.5. Proof for Lemma 2

THEOREM2 (continuing fromp. 27). The estimators, V̂ t and V̂ t, are consistent. Furthermore,
under standard regularity conditions for the central limit theorem,

√
N(Λtµ̂ –Λtµ) converges

to a multivariate normal distribution,N
(
0,ΛtΣΛTt

)
, as N grows, where Σ = Cov(Zi) and µ =

E[Zi]. The bounds themselves, V̂ t and V̂ t, converges either to themin/max of two normals,Λtµ̂,
when the bounds collapse (i.e., V t = V t), or to a normal centered around the corresponding
bound when the bounds do not collapse (i.e., V t < V t).

Proof of Theorem 2. The proof is presented in two parts: first, we establish consistency
of the estimators, and second, we characterize their asymptotic distribution.

Part 1: Consistency. Consistency is established using the Law of Large Numbers (LLN)
and the Continuous Mapping Theorem (CMT).

First, we show that the Horvitz-Thompson estimator for each single-world mean, µ̂ f ,
is consistent for the truemean, whichwe denote µ f . The estimator is µ̂ f = N–1

∑N
i=1 Zi, f ,

where the IPW outcome Zi, f is defined in Estimator 1. The terms Zi, f are i.i.d. across i.
We show that E[Zi, f ] = µ f . Let p f = P(Fi = f ,Asi · (1 – Fi) = 0) be the known probability
of assignment to the identifying cell for µ f .

E[Zi, f ] = E

[
1{Fi = f ,Asi · (1 – Fi) = 0}

p f
Yi

]
= E
[
Yi|Fi = f ,Asi · (1 – Fi) = 0

]

=



E[Y (0, 0)] if f = (0, 0)

E[Y (A1(1), 0)] if f = (1, 0)

E[Y (0,A2(0, 1))] if f = (0, 1)

E[Y (A1(1),A2(A1(1), 1))] else

Since Zi, f are i.i.d. and under standard regularity conditions have finite expectation µ f ,

the Law of Large Numbers implies that µ̂ f
p−→ µ f . This holds for all f ∈ F. Therefore,

the vector of estimators µ̂ is consistent for the vector of true means µ: µ̂
p−→ µ.
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The candidate values for the bounds are Λtµ̂. Since matrix multiplication is a con-
tinuous function, the CMT implies Λtµ̂

p−→ Λtµ. Let (Ṽt(0), Ṽt(1)) = Λtµ be the true
candidate values.

Finally, the estimators for the bounds are V̂ t = min(Λtµ̂) and V̂ t = max(Λtµ̂). The
min /max functions are continuous, so a further application of the CMT yields:

V̂ t
p−→ min(Λtµ) = V t

V̂ t
p−→ max(Λtµ) = V t

Thus, the estimators for the attribution bounds are also consistent.

Part 2: Asymptotic Distribution. The characterization of the asymptotic distribution re-
lies on the Multivariate Central Limit Theorem (CLT) and the Delta Method, generalized
for non-differentiable functions.

First, we apply the Multivariate CLT to the vector of estimated means µ̂. As µ̂ is the
sample average of the i.i.d. random vectors Zi = (Zi,00, . . . , Zi,11)T , and assuming finite
second moments, the CLT implies:

√
N(µ̂ – µ) d−→ N(0,Σ)

whereµ = E[Zi] andΣ = Cov(Zi) = E[ZiZTi ]–µµ
T . The ( f , f ′) element ofΣ is Cov(Zi, f , Zi, f ′).

Note that for f ≠ f ′, the product Zi, f Zi, f ′ is identically zero because an individual cannot
be in two different identifying cells simultaneously. Thus, for f ̸= f ′, E[Zi, f Zi, f ′] = 0 and
Cov(Zi, f , Zi, f ′) = –µ f µ f ′.

Next, consider the linear transformation Λtµ̂. By the properties of multivariate
normal distributions, we have:

√
N(Λtµ̂ –Λtµ) = Λt

(√
N(µ̂ – µ)

)
d−→ N(0,ΛtΣΛTt )

Let (G0,G1)T ∼ N(0,ΛtΣΛTt ) denote the limiting random vector.
Finally, we characterize the distribution of the bounds estimators. Let’s analyze the

lower bound V̂ t.

√
N(V̂ t – V t) =

√
N
(
min(V̂t(0), V̂t(1)) – min(Vt(0),Vt(1))

)
We consider two cases, as stated in the theorem.
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• Case 1: The bounds are distinct (V t < V t). This implies Vt(0) ̸= Vt(1). Without loss of
generality, assume Vt(0) < Vt(1), so V t = Vt(0). Since V̂t(0) and V̂t(1) are consistent,
for largeN, we will have V̂t(0) < V̂t(1) with probability approaching one. In this event,
V̂ t = V̂t(0). Therefore, the asymptotic distribution of

√
N(V̂ t – V t) is identical to that

of
√
N(V̂t(0) – Vt(0)). This corresponds to the first component of the limiting normal

vector, G0. Thus,
√
N(V̂ t – V t)

d−→ G0 ∼ N(0, (ΛtΣΛTt )11). The distribution is normal.
The same argument applies for the joint distribution of the bounds.

• Case 2: The bounds collapse (V t = V t). This implies Vt(0) = Vt(1) = V t. In this case, we
can no longer assume that one estimator will be smaller than the other. We have:

√
N(V̂ t – V t) =

√
N(min(V̂t(0), V̂t(1)) – Vt(0))

= min
(√

N(V̂t(0) – Vt(0)),
√
N(V̂t(1) – Vt(1))

)
By the Continuous Mapping Theorem, since the vector (

√
N(V̂t(0) –Vt(0)),

√
N(V̂t(1) –

Vt(1)))T converges in distribution to (G0,G1)T , the expression above converges in
distribution to min(G0,G1). This is the minimum of two (potentially correlated)
normal random variables, which is a non-normal distribution. The same argument
applies for the joint distribution of the bounds.

This completes the proof.

B.6. Proof for Algorithm 1

THEOREM A1 (Validity of Subsampling for Attribution Bounds). Suppose the conditions of
Theorem 2 hold. For t ∈ {1, 2}, let θ̂N,t be either the lower bound estimator V̂ t or the upper
bound estimator V̂ t, calculated on the full sample of size N. Let θt be its corresponding true
value. Let b be a subsample size such that b → ∞ and b/N → 0 as N → ∞. Then, the
subsampling-based confidence interval for θ is asymptotically valid.

PROOF. The proof proceeds by verifying the conditions of the general subsampling
theorem of Politis and Romano (1994). The main condition is that the normalized
statistic,

√
N(θ̂N,t – θt), must converge in distribution to some limit J. However, we

know from Theorem 2 that this converges either to a normal distribution or to the max
of two normals, depending on whether or not the bounds collapse (i.e., V t = V t).

In both cases,
√
N(θ̂N,t – V t) converges to a well-defined limiting distribution J.

The conditions of the subsampling theorem are met. Therefore, the quantiles of the
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subsampling distribution for
√
b(θ̂∗t,b–θ̂N,t) provide a consistent estimate of the quantiles

of the true sampling distribution of
√
N(θ̂N,t – θt). This allows for the construction of

an asymptotically valid confidence interval. The logic applies for the upper and lower
bounds as well as for each t ∈ {1, 2}.

B.7. Proof for Proposition 5

PROPOSITION 5 (continuing from p. 29). Under Assumptions 1, 3 and 4, all six counterfac-
tuals means required for the attribution bounds (Lemma 2) are identified and can be expressed
in terms of observable distributions:

E[Y (0, 0)] = E
[
E[Y |A = (0, 0),X]

]
E[Y (A1, 0)] =

∑
a1

E
[
E[Y |A = (a1, 0),X]P(A1 = a1|X)

]
E[Y (0,A2(0))] =

∑
a2

E
[
E[Y |A = (0, a2),X]P(A2 = a2|A1 = 0,X)

]
E[Y (0,A2(A1))] =

∑
a2

E
[
E[Y |A = (0, a2),X]P(A2 = a2|X)

]
E[Y (A1,A2(0))] =

∑
a1,a2

E
[
E[Y |A = (a1, a2),X]P(A1 = a1|X)P(A2 = a2|A1 = 0,X)

]
E[Y (A1,A2)] = E[Y ]

As a consequence, the attribution bounds, V t and V t, are also identified for each t.

Proof of Proposition 5. Throughout we assume Assumptions 1 (the Causal Model), 3 (Se-
quential Unconfoundedness), and 4 (Positivity) hold. We begin by deriving a few general
identification results, which help simplify our subsequent proof that the six required
quantities are identified. For clarity in the proof, we use the simplified observational
notation A1 = A1(1) and A2(a1) = A2(a1, 1).

General Identification Result.. Here, we start by showing that two useful conditional
expectations are identified.

First, we show that the conditional expectation E[Y (a1, a2)|X = x] is identified for
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any fixed treatment path (a1, a2).

E[Y (a1, a2)|X = x](eq. 1)

= E[Y (a1, a2)|A1 = a1,X = x] Ass. 3

= E[Y (a1, a2)|A1 = a1,A2(a1) = a2,X = x] Ass. 3

= E[Y |A1 = a1,A2 = a2,X = x] Ass. 1

This result is the standard g-formula for a fixed treatment path, which identifies the
unobservable potential outcome mean with an observable conditional mean. Here,
assumption 4, ensures that the conditioning event in the final expression {A1 = a1,A2 =
a2,X = x}, occurs with non-zero probability for all relevant values of (a1, a2, x). With-
out positivity, the conditional expectation E[Y |A1 = a1,A2 = a2,X = x] would not be
identified. All subsequent identification results rely on Assumption 4 in an analogous
manner.

Second, we identify the conditional expectation, E[Y (a1, a2)|A2(ã1) = a2,X = x] for
any a1, a2, ã1 ∈ {0, 1}:

E[Y (a1, a2)|A2(ã1) = a2,X = x](eq. 2)

= E[Y (a1, a2)|A1 = ã1,A2(ã1) = a2,X = x] Ass. 3

= E[Y (a1, a2)|A1 = ã1,X = x] Ass. 3

= E[Y (a1, a2)|A1 = a1,X = x] Ass. 3

= E[Y (a1, a2)|A1 = a1,A2(a1) = a2,X = x] Ass. 3

= E[Y |A1 = a1,A2 = a2,X = x] Ass. 1

Identification of the Six Counterfactual Means..

(a) E[Y (0, 0)]: Here, we apply the Law of Iterated Expectations (abbreviated, L.I.E.) over
the distribution of X, and then apply eq. 1:

E[Y (0, 0)] = E
[
E[Y (0, 0)|X]

]
L.I.E.

= E
[
E[Y |A1 = 0,A2 = 0,X]

]
eq. 1

(b) E[Y (A1, 0)]: Using the Law of Iterated Expectations over the distribution of A1 and
X for the first two equalities, and applying Assumption 3 for the third equality and
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finally plugging in our earlier results gives us the following:

E[Y (A1, 0)] = E
[
E[Y (A1, 0)|X]

]
L.I.E.

= E

[∑
a1

E[Y (a1, 0)|A1 = a1,X]P(A1 = a1|X)

]
L.I.E.

= E

[∑
a1

E[Y (a1, 0)|X]P(A1 = a1|X)

]
Ass. 3

= E

[∑
a1

E[Y |A1 = a1,A2 = 0,X]P(A1 = a1|X)

]
eq. 1

(c) E[Y (0,A2(0))]: Once again, use the Law of Iterated Expectations twice (over X and
A2(0)) to get the first equality, apply Assumption 3 for the second equality, and then
use Assumption 1 to get the desired result:

E[Y (0,A2(0))]

= E

[∑
a2

E[Y (0, a2)|A2(0) = a2,X]P(A2(0) = a2|X)

]
L.I.E.

= E

[∑
a2

E[Y (0, a2)|A1 = 0,A2(0) = a2,X]P(A2(0) = a2|A1 = 0,X)

]
Ass. 3

= E

[∑
a2

E[Y |A1 = 0,A2 = a2,X]P(A2 = a2|A1 = 0,X)

]
Ass. 1

(d) E[Y (0,A2(A1))]: Once again, use the Law of Iterated Expectations twice (over X and
A2(A1)) to get the first equality, apply Assumption 3 for the third equality, and use
Assumption 1 to get the second and final equalities:

E[Y (0,A2(A1))]

= E

[∑
a2

E[Y (0, a2)|A2(A1) = a2,X]P(A2(A1) = a2|X)

]
L.I.E.

= E

[∑
a2

E[Y (0, a2)|A2 = a2,X]P(A2 = a2|X)

]
Ass. 1

= E

[∑
a2

E[Y (0, a2)|A1 = 0,A2 = a2,X]P(A2 = a2|X)

]
Ass. 3
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= E

[∑
a2

E[Y |A1 = 0,A2 = a2,X]P(A2 = a2|X)

]
Ass. 1

(e) E[Y (A1,A2(0))]: Once again, use the Law of Iterated Expectations twice (over X and
A1), then apply Assumption 3

E[Y (A1,A2(0))]

= E

[∑
a1

E[Y (a1,A2(0))|A1 = a1,X]P(A1 = a1|X)

]
L.I.E.

= E

[∑
a1

E[Y (a1,A2(0))|X]P(A1 = a1|X)

]
Ass. 3

= E

∑
a1,a2

E[Y (a1, a2)|A2(0) = a2,X]P(A2(0) = a2|X)P(A1 = a1|X)

 L.I.E.

= E

∑
a1,a2

E[Y |A1 = a1,A2 = a2,X]P(A2 = a2|A1 = 0,X)P(A1 = a1|X)

 eq. 2 with ã1 = 0

(f) E[Y (A1,A2)]: By Assumption 1, Y (A1,A2(A1)) = Y . So, this is the expected observed
outcome:

E[Y (A1,A2(A1))] = E[Y ] Ass. 1

All six required counterfactual means are expressed in terms of observable conditional
expectations and probabilities, and are therefore identified under the stated assump-
tions.

B.8. Proof for Theorem A2

THEOREM A2. Under Assumptions 1, 3 and 4 and standard regularity conditions for es-
timating parametric models, the vector of six estimated counterfactual means is consis-
tent and asymptotically normal. Consequently, the vector of possible attribution values,
V̂t = (V̂t(λ))λ∈{0,1}3, is also consistent and asymptotically normal. The estimator for the
lower (upper) bound, V̂ t, is asymptotically normal if the minimum (maximum) of Vt(λ)
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is unique.13 Otherwise, its asymptotic distribution is that of the minimum (maximum) of
multiple normal random variables.

Proof of Theorem A2. The proof establishes the consistency and asymptotic normality
of the vector of the six estimated counterfactual means, which we denote θ̂. The results
for the final attribution bounds then follow via the Continuous Mapping Theorem and
the Delta Method.

The proof relies on standard M-estimation theory for two-step estimators. The use
of K-fold cross-fitting is a crucial feature that simplifies the asymptotic analysis, by
ensuring that the estimation error from the first-stage nuisance models does not affect
the first-order asymptotic distribution of the final estimator, provided the nuisance
models are correctly specified.

Part 1: Consistency. We first establish the consistency of the estimator vector θ̂ for the
true vector of counterfactual means θ0.

(a) Under standard regularity conditions for parametric M-estimation (e.g., for logistic
or linear regression), the estimator for the nuisance parameters, γ̂(–k), computed
on data outside of fold k, is a consistent estimator for the true parameter vector γ0.
That is, γ̂(–k)

p−→ γ0 as the sample size N(1 – 1/K)→∞.

(b) For each observation i in a given fold k, the predicted values for the nuisance func-
tions (e.g., µ̂i(a1, a2) = µ̂(–k)(a1, a2,Xi; γ̂

(–k))) are constructed using an estimator γ̂(–k)

that is independent of the observation’s own data (Yi,Ai,Xi).

(c) Since the parametric functions µ(·) and p(·) are continuous in the parameters γ,
and γ̂(–k) is consistent, the cross-fitted predictions are consistent estimators of the
true conditional functions. For instance, µ̂i(a1, a2) converges in probability to the
true function µ(a1, a2,Xi) for all a1, a2 ∈ {0, 1}. The same applies for the propensi-
ties, p̂i(a2|a1), which converges in probability to the true conditional probability,
p(a2|a1,Xi), and p̂i(a1), which converges in probability to the true conditional prob-
ability p(a1|Xi) (for all a1, a2 ∈ {0, 1}).

(d) Each component of θ̂ is a sample average of these predicted values or a sample
average of the product of predicted values. As an example of the first case, consider

13Letting Vt,(1) ≤ Vt,(2) ≤ . . . ≤ Vt,(8) denote the order statistics for the vector of true values
{Vt(λ)}λ∈{0,1}3 , the condition for a unique minimum is Vt,(1) < Vt,(2), and for a unique maximum is
Vt,(8) > Vt,(7).
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the first component, θ̂1 = N–1
∑N
i=1 µ̂i(0, 0). By a uniform law of large numbers, this

sample average converges in probability to the expectation of the true function:

θ̂1 =
1
N

N∑
i=1
µ̂i(0, 0)

p−→ E[µ(0, 0,Xi)] = E[E[Y |A = (0, 0),X]] = θ1,0

As an example of the second case, consider the second component:

θ̂2 =
∑
a1
N–1

N∑
i=1
µ̂i(a1, 0) p̂i(a1)

To show that this converges in probability to θ2 =
∑
a1 E[µ(a1, 0,X) p(a1|X)], we break

down the error for a fixed a1 into an approximation and a sampling error:

1
N

∑
i

µ̂i(a1, 0) p̂i(a1) – E[µ(a1, 0,X) p(a1|X)]

=

 1
N

∑
i

µ̂i(a1, 0) p̂i(a1) – µi(a1, 0) pi(a1)


︸ ︷︷ ︸

Approximation Error

+

 1
N

∑
i

µi(a1, 0) pi(a1) – E[µ(a1, 0,X) p(a1|X)]


︸ ︷︷ ︸

Sampling Error

The sampling error vanishes because of the law of large numbers, while the first
term goes to zero because of the individual estimates are consistent and Slutsky’s
theorem ensures their product is as well. In this way, we see that the error for a fixed
a1 goes to zero, and thus, our estimator is consistent. This logic applies to all six
components of the estimator. Therefore, the vector estimator θ̂ is consistent for the
true vector θ0.

Part 2: Asymptotic Normality. To establish asymptotic normality, we derive the in-
fluence function for θ̂. A key result from the literature on two-step estimation with
cross-fitting (e.g., Chernozhukov et al., 2018, “Double/debiased machine learning for
treatment and structural parameters”) is that for correctly specified nuisance models,
the first-stage estimation error is asymptotically negligible. The estimator behaves as if
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the true nuisance parameters γ0 were known.
The estimator θ̂ is asymptotically equivalent to the “oracle” estimator that uses the

true nuisance functions:

√
N(θ̂ – θ0) =

1√
N

N∑
i=1
(m(Xi;γ0) – θ0) + o p(1)

wherem(Xi;γ0) is the vector of identification formulas from Proposition 5 evaluated at
the true parameters. For example, the first component ism1(Xi;γ0) = µ(0, 0,Xi;γ0).

Let the influence function for θ̂ be the vector ψ(Wi) = m(Xi;γ0) – θ0, whereWi =
(Yi,Ai,Xi). The components of this influence function are:

ψ1(Wi) = µ(0, 0,Xi) – θ1,0
ψ2(Wi) =

∑
a1
µ(a1, 0,Xi) p(a1|Xi) – θ2,0

...

ψ6(Wi) = Yi – θ6,0

The termsψ(Wi) are i.i.d. random vectors with E[ψ(Wi)] = E[m(Xi;γ0)]–θ0 = θ0–θ0 = 0.
Assumingfinite secondmoments of these terms, theMultivariateCentral Limit Theorem
applies:

√
N(θ̂ – θ0) =

1√
N

N∑
i=1
ψ(Wi) + o p(1)

d−→ N(0,Ω)

where the asymptotic variance-covariance matrix isΩ = Var(ψ(Wi)) = E[ψ(Wi)ψ(Wi)T ].
This establishes the asymptotic normality of the vector of the six estimated counterfac-
tual means.

Part 3: Asymptotic Distribution of the Bounds.. The vector of possible attribution values,
V̂ t, is a linear transformation of θ̂. Let V̂ t = Ltθ̂ for the appropriate 8×6 transformation
matrix Lt that maps the six means to the eight candidate bound values (one for each
λ ∈ {0, 1}3). By the Delta Method,

√
N(V̂ t – V t) is also asymptotically normal with mean

zero and covariance matrix LtΩLTt .
The estimator for the lower bound is V̂ t = min(V̂ t). Its asymptotic distribution

depends on the uniqueness of the minimum of the true vector V t.

• Case 1: Unique Minimum. If the minimum element of V t is unique (i.e., Vt,(1) < Vt,(2)
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where Vt,(s) denotes the s order statistic for the vector Vt), then with probability
approaching one, V̂ t will be equal to the single component of the vector V̂ t that
corresponds to thisminimum. In this case, the asymptotic distribution of

√
N(V̂ t–V t)

is simply the marginal normal distribution of that component.

• Case 2: Non-UniqueMinimum. Ifmultiple components ofV t share the sameminimum
value, then the asymptotic distribution of

√
N(V̂ t – V t) is given by the minimum of

the corresponding components of the limiting multivariate normal random vector.
This distribution is non-normal.

A symmetric argument holds for the upper bound estimator V̂ t = max(V̂ t). This com-
pletes the proof.
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